Single-electron transfer between sulfonium and tryptophan enables site-selective photo crosslinking of methyllysine reader proteins

Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).Article 
CAS 

Google Scholar 
Cochran, A. G., Conery, A. R. & Sims, R. J. Bromodomains: a new target class for drug development. Nat. Rev. Drug Discov. 18, 609–628 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zaware, N. & Zhou, M. M. Bromodomain biology and drug discovery. Nat. Struct. Mol. Biol. 26, 870–879 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, D. et al. YEATS2 is a selective histone crotonylation reader. Cell Res. 26, 629–632 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Andrews, F. H. et al. The Taf14 YEATS domain is a reader of histone crotonylation. Nat. Chem. Biol. 12, 396–398 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luo, M. Chemical and biochemical perspectives of protein lysine methylation. Chem. Rev. 118, 6656–6705 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Milosevich, N. & Hof, F. Chemical inhibitors of epigenetic methyllysine reader proteins. Biochemistry 55, 1570–1583 (2016).Article 
CAS 
PubMed 

Google Scholar 
Huang, H., Lin, S., Garcia, B. A. & Zhao, Y. Quantitative proteomic analysis of histone modifications. Chem. Rev. 115, 2376–2418 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cao, X. J. & Garcia, B. A. Global proteomics analysis of protein lysine methylation. Curr. Protoc. Protein Sci. 86, 24.8.1–24.8.19 (2016).Article 
PubMed 

Google Scholar 
Carlson, S. M., Moore, K. E., Green, E. M., Martín, G. M. & Gozani, O. Proteome-wide enrichment of proteins modified by lysine methylation. Nat. Protoc. 9, 37–50 (2014).Article 
CAS 
PubMed 

Google Scholar 
Kuo, A. J. et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome. Nature 484, 115–119 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chan, D. W. et al. Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics 9, 2343–2354 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Preston, G. W. & Wilson, A. J. Photo-induced covalent cross-linking for the analysis of biomolecular interactions. Chem. Soc. Rev. 42, 3289–3301 (2013).Article 
CAS 
PubMed 

Google Scholar 
Lin, J. et al. Menin “reads” H3K79me2 mark in a nucleosomal context. Science 379, 717–723 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yang, T., Liu, Z. & Li, X. D. Developing diazirine-based chemical probes to identify histone modification ‘readers’ and ‘erasers’. Chem. Sci. 6, 1011–1017 (2015).Article 
CAS 
PubMed 

Google Scholar 
Li, B. X. et al. Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation. Nat. Chem. 13, 902–908 (2021).Article 
CAS 
PubMed 

Google Scholar 
Szijj, P. A., Kostadinova, K. A., Spears, R. J. & Chudasama, V. Tyrosine bioconjugation – an emergent alternative. Org. Biomol. Chem. 18, 9018–9028 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seki, Y. et al. Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Soc. 138, 10798–10801 (2016).Article 
CAS 
PubMed 

Google Scholar 
Tower, S. J., Hetcher, W. J., Myers, T. E., Kuehl, N. J. & Taylor, M. T. Selective modification of tryptophan residues in peptides and proteins using a biomimetic electron transfer process. J. Am. Chem. Soc. 142, 9112–9118 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Imiołek, M. et al. Selective radical trifluoromethylation of native residues in proteins. J. Am. Chem. Soc. 140, 1568–1571 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Yu, Y. et al. Chemoselective peptide modification via photocatalytic tryptophan β-position conjugation. J. Am. Chem. Soc. 140, 6797–6800 (2018).Article 
CAS 
PubMed 

Google Scholar 
Hoopes, C. R. et al. Donor–acceptor pyridinium salts for photo-induced electron-transfer-driven modification of tryptophan in peptides, proteins, and proteomes using visible light. J. Am. Chem. Soc. 144, 6227–6236 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, P. et al. Teraryl braces in macrocycles: synthesis and conformational landscape remodeling of peptides. J. Am. Chem. Soc. 145, 13968–13978 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kaiser, D., Klose, I., Oost, R., Neuhaus, J. & Maulide, N. Bond-forming and -breaking reactions at sulfur(iv): sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts. Chem. Rev. 119, 8701–8780 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lyko, F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92 (2018).Article 
CAS 
PubMed 

Google Scholar 
Boulias, K. & Greer, E. L. Biological roles of adenine methylation in RNA. Nat. Rev. Genet. 24, 143–160 (2023).Article 
CAS 
PubMed 

Google Scholar 
Husmann, D. & Gozani, O. Histone lysine methyltransferases in biology and disease. Nat. Struct. Mol. Biol. 26, 880–889 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stojković, V., Chu, T., Therizols, G., Weinberg, D. E. & Fujimori, D. G. miCLIP-MaPseq, a substrate identification approach for radical SAM RNA methylating enzymes. J. Am. Chem. Soc. 140, 7135–7143 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Lee, Y. H., Ren, D., Jeon, B. & Liu, H. W. S-Adenosylmethionine: more than just a methyl donor. Nat. Prod. Rep. 40, 1521–1549 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gharakhanian, E. G., Bahrun, E. & Deming, T. J. Influence of sulfoxide group placement on polypeptide conformational stability. J. Am. Chem. Soc. 141, 14530–14533 (2019).Article 
CAS 
PubMed 

Google Scholar 
Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).Article 
CAS 
PubMed 

Google Scholar 
Kramer, J. R. & Deming, T. J. Preparation of multifunctional and multireactive polypeptides via methionine alkylation. Biomacromolecules 13, 1719–1723 (2012).Article 
CAS 
PubMed 

Google Scholar 
Albanese, K. I. et al. Engineered reader proteins for enhanced detection of methylated lysine on histones. ACS Chem. Biol. 15, 103–111 (2020).Article 
CAS 
PubMed 

Google Scholar 
Heinrich, C., Adam, S. & Arnold, W. The reaction of dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide with N-acetyl-L-tryptophan amide. FEBS Lett. 33, 181–183 (1973).Article 
CAS 
PubMed 

Google Scholar 
Kandukuri, S. R. et al. X-ray characterization of an electron donor–acceptor complex that drives the photochemical alkylation of indoles. Angew. Chem. Int. Ed. 54, 1485–1489 (2015).Article 
CAS 

Google Scholar 
Li, J. et al. Structural basis for specific binding of human MPP8 chromodomain to histone H3 methylated at lysine 9. PLoS ONE 6, e25104 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Crisenza, G. E. M., Mazzarella, D. & Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor–acceptor complexes. J. Am. Chem. Soc. 142, 5461–5476 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, J., Thompson, J. R., Botuyan, M. V. & Mer, G. Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-Tudor. Nat. Struct. Mol. Biol. 15, 109–111 (2008).Article 
CAS 
PubMed 

Google Scholar 
Huang, Y., Fang, J., Bedford, M. T., Zhang, Y. & Xu, R. M. Recognition of histone H3 lysine-4 methylation by the double Tudor domain of JMJD2A. Science 312, 748–751 (2006).Article 
CAS 
PubMed 

Google Scholar 
Grimm, C. et al. Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt. EMBO J. 28, 1965–1977 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lin, J., Bao, X. & Li, X. D. A tri-functional amino acid enables mapping of binding sites for posttranslational-modification-mediated protein-protein interactions. Mol. Cell 81, 2669–2681.e9 (2021).Article 
CAS 
PubMed 

Google Scholar 
Burton, A. J. et al. In situ chromatin interactomics using a chemical bait and trap approach. Nat. Chem. 12, 520–527 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Padeken, J., Methot, S. P. & Gasser, S. M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol. 23, 623–640 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lalonde, M.-E. et al. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes Dev. 27, 2009–2024 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xue, H. et al. Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature 573, 445–449 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 141, 1183–1194 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, J. et al. A glycosidic-bond-based mass-spectrometry-cleavable cross-linker enables in vivo cross-linking for protein complex analysis. Angew. Chem. Int. Ed. 62, e202212860 (2023).Article 
CAS 

Google Scholar 
Mandal, M. et al. Histone reader BRWD1 targets and restricts recombination to the Igk locus. Nat. Immunol. 16, 1094–1103 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, X. et al. DDB1 binds histone reader BRWD3 to activate the transcriptional cascade in adipogenesis and promote onset of obesity. Cell Rep. 35, 109281 (2021).Article 
CAS 
PubMed 

Google Scholar 
Morgan, M. A. J. et al. A trivalent nucleosome interaction by PHIP/BRWD2 is disrupted in neurodevelopmental disorders and cancer. Genes Dev. 35, 1642–1656 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Han, D. et al. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. Proc. Natl Acad. Sci. USA 120, e2305092120 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schiefner, A. et al. Cation-π interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. J. Biol. Chem. 279, 5588–5596 (2004).Article 
CAS 
PubMed 

Google Scholar 
Horn, C. et al. Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J. Mol. Biol. 357, 592–606 (2006).Article 
CAS 
PubMed 

Google Scholar 
Oswald, C. et al. Crystal structures of the choline/acetylcholine substrate-binding protein ChoX from Sinorhizobium meliloti in the liganded and unliganded-closed states. J. Biol. Chem. 283, 32848–32859 (2008).Article 
CAS 
PubMed 

Google Scholar 
Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).Article 
CAS 
PubMed 

Google Scholar 
Yang, Q., Gao, Y., Liu, X., Xiao, Y. & Wu, M. A general method to edit histone H3 modifications on chromatin via sortase-mediated metathesis. Angew. Chem. Int. Ed. 61, e202209945 (2022).Article 
CAS 

Google Scholar 
Liu, C. et al. Identification of protein direct interactome with genetic code expansion and search engine OpenUaa. Adv. Biol. 5, e2000308 (2021).Article 

Google Scholar 

Hot Topics

Related Articles