The rapid formation of macromolecules in irradiated ice of protoplanetary disk dust traps

Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).Article 
ADS 

Google Scholar 
Alexander, C. M. O. ’D., Cody, G. D., De Gregorio, B. T., Nittler, L. R. & Stroud, R. M. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Geochemistry 77, 227–256 (2017).Article 

Google Scholar 
d’Ischia, M. et al. Insoluble organic matter in chondrites: archetypal melanin-like PAH-based multifunctionality at the origin of life? Phys. Life Rev. 37, 65–93 (2021).Article 
ADS 

Google Scholar 
Paquette, J. A. et al. D/H in the refractory organics of comet 67P/Churyumov-Gerasimenko measured by Rosetta/COSIMA. Mon. Not. R. Astron. Soc. 504, 4940–4951 (2021).Article 
ADS 

Google Scholar 
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).Article 
ADS 

Google Scholar 
Kissel, J. & Krueger, F. R. The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326, 755–760 (1987).Article 
ADS 

Google Scholar 
Hayatsu, R., Matsuoka, S., Scott, R. G., Studier, M. H. & Anders, E. Origin of organic matter in the early solar system—VII. The organic polymer in carbonaceous chondrites. Geochim. Cosmochim. Acta 41, 1325–1339 (1977).Article 
ADS 

Google Scholar 
Cody, G. D. et al. Establishing a molecular relationship between chondritic and cometary organic solids. Proc. Natl Acad. Sci. USA 108, 19171–19176 (2011).Article 
ADS 

Google Scholar 
Robert, F. & Epstein, S. The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites. Geochim. Cosmochim. Acta 46, 81–95 (1982).Article 
ADS 

Google Scholar 
Laurent, B. et al. The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation. Nat. Commun. 6, 8567 (2015).Article 
ADS 

Google Scholar 
Alexander, C. M. O’D., Boss, A. P., Keller, L. P., Nuth, J. A. & Weinberger, A. Astronomical and meteoritic evidence for the nature of interstellar dust and its processing in protoplanetary disks. in Protostars and Planets V (eds Reipurth, B., Jewitt, D. & Keil, K.) 801–813 (University of Arizona Press, 2007).Binet, L., Gourier, D., Derenne, S. & Robert, F. Heterogeneous distribution of paramagnetic radicals in insoluble organic matter from the Orgueil and Murchison meteorites. Geochim. Cosmochim. Acta 66, 4177–4186 (2002).Article 
ADS 

Google Scholar 
Alexander, C. M. O. ’D., Nilges, M. J., Cody, G. D. & Herd, C. D. K. Are radicals responsible for the variable deuterium enrichments in chondritic insoluble organic material? Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2021.10.007 (2022).Article 

Google Scholar 
Laurent, B. et al. Isotopic and structural signature of experimentally irradiated organic matter. Geochim. Cosmochim. Acta 142, 522–534 (2014).Article 
ADS 

Google Scholar 
Ott, U. Planetary and pre-solar noble gases in meteorites. Geochemistry 74, 519–544 (2014).Article 

Google Scholar 
Strazzulla, G. & Baratta, G. A. Carbonaceous material by ion irradiation in space. Astron. Astrophys. 266, 434–438 (1992).ADS 

Google Scholar 
Ferini, G., Baratta, G. A. & Palumbo, M. E. A Raman study of ion irradiated icy mixtures. Astron. Astrophys. 414, 757–766 (2004).Article 
ADS 

Google Scholar 
Palumbo, M. E., Ferini, G. & Baratta, G. A. Infrared and Raman spectroscopies of refractory residues left over after ion irradiation of nitrogen-bearing icy mixtures. Adv. Space Res. 33, 49–56 (2004).Article 
ADS 

Google Scholar 
Danger, G. et al. The transition from soluble to insoluble organic matter in interstellar ice analogs and meteorites. Astron. Astrophys. 667, A120 (2022).Article 

Google Scholar 
Shen, C. J., Greenberg, J. M., Schutte, W. A. & Van Dishoeck, E. F. Cosmic ray induced explosive chemical desorption in dense clouds. Astron. Astrophys. 415, 203–215 (2004).Article 
ADS 

Google Scholar 
Ciesla, F. J. & Sandford, S. A. Organic synthesis via irradiation and warming of ice grains in the solar nebula. Science 336, 452–454 (2012).Article 
ADS 

Google Scholar 
van der Marel, N. et al. A major asymmetric dust trap in a transition disk. Science 340, 1199–1202 (2013).Article 
ADS 

Google Scholar 
Andrews, S. M. Observations of protoplanetary disk structures. Annu. Rev. Astron. Astrophys. 58, 483–528 (2020).Article 
ADS 

Google Scholar 
Pinilla, P. et al. Trapping dust particles in the outer regions of protoplanetary disks. Astron. Astrophys. 538, A114 (2012).Article 

Google Scholar 
Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459 (2005).Article 
ADS 

Google Scholar 
Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2022).Article 
ADS 

Google Scholar 
Hellmann, J. L. et al. Origin of isotopic diversity among carbonaceous chondrites. Astrophys. J. Lett. 946, L34 (2023).Article 
ADS 

Google Scholar 
Booth, A. S. et al. An inherited complex organic molecule reservoir in a warm planet-hosting disk. Nat. Astron. 5, 684–690 (2021).Article 
ADS 

Google Scholar 
van Der Marel, N., Booth, A. S., Leemker, M., van Dishoeck, E. F. & Ohashi, S. A major asymmetric ice trap in a planet-forming disk-I. Formaldehyde and methanol. Astron. Astrophys. 651, L5 (2021).Article 
ADS 

Google Scholar 
Brunken, N. G. C. et al. A major asymmetric ice trap in a planet-forming disk-III. First detection of dimethyl ether. Astron. Astrophys. 659, A29 (2022).Article 

Google Scholar 
Booth, A. S. et al. Sulphur monoxide emission tracing an embedded planet in the HD 100546 protoplanetary disk. Astron. Astrophys. 669, A53 (2023).Article 

Google Scholar 
van der Marel, N. Transition disks: the observational revolution from SEDs to imaging. Eur. Phys. J. Plus 138, 225 (2023).Article 
ADS 

Google Scholar 
Pinilla, P., Lenz, C. T. & Stammler, S. M. Growing and trapping pebbles with fragile collisions of particles in protoplanetary disks. Astron. Astrophys. 645, A70 (2021).Article 
ADS 

Google Scholar 
Boogert, A. C. A., Gerakines, P. A. & Whittet, D. C. B. Observations of the icy universe. Annu. Rev. Astron. Astrophys. 53, 541–581 (2015).Article 
ADS 

Google Scholar 
Bruderer, S. Survival of molecular gas in cavities of transition disks-I. CO. Astron. Astrophys. 559, A46 (2013).Article 
ADS 

Google Scholar 
Cevallos Soto, A., Tan, J. C., Hu, X., Hsu, C.-J. & Walsh, C. Inside-out planet formation–VII. Astrochemical models of protoplanetary discs and implications for planetary compositions. Mon. Not. R. Astron. Soc. 517, 2285–2308 (2022).Article 
ADS 

Google Scholar 
Potapov, A., Fulvio, D., Krasnokutski, S., Jäger, C. & Henning, T. Formation of complex organic and prebiotic molecules in H2O:NH3:CO2 ices at temperatures relevant to hot cores, protostellar envelopes, and planet-forming disks. J. Phys. Chem. A 126, 1627–1639 (2022).Article 

Google Scholar 
Ligterink, N. F. W. et al. Controlling the emission profile of an H2 discharge lamp to simulate interstellar radiation fields. Astron. Astrophys. 584, A56 (2015).Article 

Google Scholar 
Bacmann, A. et al. CO depletion and deuterium fractionation in prestellar cores. Astrophys. J. 585, L55 (2003).Article 
ADS 

Google Scholar 
Spezzano, S., Caselli, P., Sipilä, O. & Bizzocchi, L. Nitrogen fractionation towards a pre-stellar core traces isotope-selective photodissociation. Astron. Astrophys. 664, L2 (2022).Article 
ADS 

Google Scholar 
Almayrac, M. G. et al. The EXCITING experiment exploring the behavior of nitrogen and noble gases in interstellar ice analogs. Planet. Sci. J. 3, 252 (2022).Article 

Google Scholar 
Sandford, S. A., Nuevo, M., Bera, P. P. & Lee, T. J. Prebiotic astrochemistry and the formation of molecules of astrobiological interest in interstellar clouds and protostellar disks. Chem. Rev. 120, 4616–4659 (2020).Article 

Google Scholar 
Qasim, D. et al. Alcohols on the rocks: solid-state formation in a H3CC CH + OH cocktail under dark cloud conditions. ACS Earth Space Chem. 3, 986–999 (2019).Article 
ADS 

Google Scholar 
Raut, U., Fulvio, D., Loeffler, M. J. & Baragiola, R. A. Radiation synthesis of carbon dioxide in ice-coated carbon: implications for interstellar grains and icy moons. Astrophys. J. 752, 159 (2012).Article 
ADS 

Google Scholar 
Qasim, D. et al. Meteorite parent body aqueous alteration simulations of interstellar residue analogs. ACS Earth Space Chem. 7, 156–167 (2023).Article 
ADS 

Google Scholar 
Sandford, S. A., Bernstein, M. P. & Swindle, T. D. The trapping of noble gases by the irradiation and warming of interstellar ice analogs. Meteorit. Planet. Sci. 33, A135 (1998).
Google Scholar 
Sridhar, S., Bryson, J. F. J., King, A. J. & Harrison, R. J. Constraints on the ice composition of carbonaceous chondrites from their magnetic mineralogy. Earth Planet. Sci. Lett. 576, 117243 (2021).Article 

Google Scholar 
Yabuta, H. et al. Macromolecular organic matter in samples of the asteroid (162173) Ryugu. Science 379, eabn9057 (2023).Article 
ADS 

Google Scholar 
Blum, J., Bischoff, D. & Gundlach, B. Formation of comets. Universe 8, 381–415 (2022).Article 
ADS 

Google Scholar 
Busemann, H. et al. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006).Article 
ADS 

Google Scholar 
Binkert, F. & Birnstiel, T. Carbon depletion in the early Solar System. Mon. Not. R. Astron. Soc. 520, 2055–2080 (2023).Article 
ADS 

Google Scholar 
De Gregorio, B. T. et al. Isotopic and chemical variation of organic nanoglobules in primitive meteorites. Meteorit. Planet. Sci. 48, 904–928 (2013).Article 
ADS 

Google Scholar 
Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J. & Zolensky, M. E. Organic globules in the Tagish Lake meteorite: remnants of the protosolar disk. Science 314, 1439–1442 (2006).Article 
ADS 

Google Scholar 
Muñoz-Caro, G. M. et al. Comparison of UV and high-energy ion irradiation of methanol: ammonia ice. Astron. Astrophys. 566, A93 (2014).Article 

Google Scholar 
Stammler, S. M. & Birnstiel, T. DustPy: a Python package for dust evolution in protoplanetary disks. Astrophys. J. 935, 35 (2022).Article 
ADS 

Google Scholar 
Dullemond, C. P. et al. RADMC-3D: a multi-purpose radiative transfer tool. Astrophysics Source Code Library http://ascl.net/1202.015 (2012).Cruz-Diaz, G. A., Muñoz-Caro, G. M., Chen, Y.-J. & Yih, T.-S. Vacuum-UV spectroscopy of interstellar ice analogs-I. Absorption cross-sections of polar-ice molecules. Astron. Astrophys. 562, A119 (2014).Article 
ADS 

Google Scholar 
Birnstiel, T., Fang, M. & Johansen, A. Dust evolution and the formation of planetesimals. Space Sci. Rev. 205, 41–75 (2016).Article 
ADS 

Google Scholar 
Ligterink, N. Dust_trap_radiation_model. Zenodo https://zenodo.org/records/11953364 (2024).

Hot Topics

Related Articles