A red-light-powered silicon nanowire biophotochemical diode for simultaneous CO2 reduction and glycerol valorization

Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016).Article 
PubMed 

Google Scholar 
Yin, J., Molini, A. & Porporato, A. Impacts of solar intermittency on future photovoltaic reliability. Nat. Commun. 11, 1478 (2020).Article 

Google Scholar 
Kim, D., Sakimoto, K. K., Hong, D. & Yang, P. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem. Int. Ed. 54, 3259–3266 (2015).Article 
CAS 

Google Scholar 
Deng, J. et al. Nanowire photoelectrochemistry. Chem. Rev. 119, 9221–9259 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kim, J. et al. Robust FeOOH/BiVO4/Cu(In,Ga)Se2 tandem structure for solar-powered biocatalytic CO2 reduction. J. Mater. Chem. A 8, 8496–8502 (2020).Article 
CAS 

Google Scholar 
Kuk, S. K. et al. CO2-reductive, copper oxide-based photobiocathode for Z-scheme semi-artificial leaf structure. ChemSusChem 13, 2940–2944 (2020).Article 
CAS 
PubMed 

Google Scholar 
Nozik, A. J. Photochemical diodes. Appl. Phys. Lett. 30, 567–569 (1977).Article 
CAS 

Google Scholar 
Andrei, V., Roh, I. & Yang, P. Nanowire photochemical diodes for artificial photosynthesis. Sci. Adv. 9, eade9044 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sivula, K. & Van De Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).Article 
CAS 

Google Scholar 
Liu, C., Tang, J., Chen, H. M., Liu, B. & Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).Article 
CAS 
PubMed 

Google Scholar 
Sokol, K. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 3, 944–951 (2018).Article 
CAS 

Google Scholar 
Kim, H., Bae, S., Jeon, D. & Ryu, J. Fully solution-processable Cu2O–BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chem. 20, 3732–3742 (2018).Article 
CAS 

Google Scholar 
Li, C. et al. Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials. Energy Environ. Sci. 12, 923–928 (2019).Article 
CAS 

Google Scholar 
Gurudayal et al. Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. Energy Environ. Sci. 12, 1068–1077 (2019).Article 
CAS 

Google Scholar 
Rahaman, M. et al. Solar-driven liquid multi-carbon fuel production using a standalone perovskite–BiVO4 artificial leaf. Nat. Energy 8, 629–638 (2023).Article 
CAS 

Google Scholar 
Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M. & Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1, e00103–e00110 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, C. et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cestellos-Blanco, S. et al. Production of PHB from CO2-derived acetate with minimal processing assessed for space biomanufacturing. Front. Microbiol. 12, 700010 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Cestellos-Blanc, S. et al. Photosynthetic biohybrid coculture for tandem and tunable CO2 and N2 fixation. Proc. Natl Acad. Sci. USA 119, e2122364119 (2022).Article 

Google Scholar 
Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474 (2019).Article 
CAS 

Google Scholar 
Lin, J. A., Roh, I. & Yang, P. Photochemical diodes for simultaneous bias-free glycerol valorization and hydrogen evolution. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.3c01982 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Tremblay, P. L., Höglund, D., Koza, A., Bonde, I. & Zhang, T. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. Sci. Rep. 5, 16168 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, J., Cestellos-Blanco, S., Shen, Y., Cai, R. & Yang, P. Enhancing biohybrid CO2 to multicarbon reduction via adapted whole-cell catalysts. Nano Lett. https://doi.org/10.1021/acs.nanolett.2c01576 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, F., Hanna, M. A. & Sun, R. Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol. Biofuels 5, 13 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821 (2014).Article 
CAS 
PubMed 

Google Scholar 
Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brito-Santos, G. et al. Degradation analysis of highly UV-resistant down-shifting layers for silicon-based PV module applications. Mater. Sci. Eng. B 288, 116207 (2023).Article 
CAS 

Google Scholar 
Wang, Y. et al. Antimicrobial blue light inactivation of Gram-negative pathogens in biofilms: in vitro and in vivo studies. J. Infect. Dis. 213, 1380–1387 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. Visible light-induced killing of bacteria as a function of wavelength: implication for wound healing. Lasers Surg. Med. 42, 467–472 (2010).Article 
PubMed 

Google Scholar 
Su, Y. et al. Single-nanowire photoelectrochemistry. Nat. Nanotechnol. 11, 609–612 (2016).Article 
CAS 
PubMed 

Google Scholar 
Liu, C. et al. Nanowire−bacteria hybrids for unassisted solar carbon dioxide fixation. Nano Lett. 15, 3634–3639 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boettcher, S. W. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011).Article 
CAS 
PubMed 

Google Scholar 
Lineberry, E. et al. High-photovoltage silicon nanowire for biological cofactor production. https://doi.org/10.1021/jacs.3c06243 (2023).Gebresemati, M., Das, G., Park, B. J. & Yoon, H. H. Electricity production from macroalgae by a microbial fuel cell using nickel nanoparticles as cathode catalysts. Int. J. Hydrogen Energy 42, 29874–29880 (2017).Article 
CAS 

Google Scholar 
Hernández, L. A., Riveros, G., González, D. M., Gacitua, M. & del Valle, M. A. PEDOT/graphene/nickel-nanoparticles composites as electrodes for microbial fuel cells. J. Mater. Sci. Mater. Electron. 30, 12001–12011 (2019).Article 

Google Scholar 
Can, M., Armstrong, F. A. & Ragsdale, S. W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem. Rev. 114, 4149–4174 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barolet, D., Christiaens, F. & Hamblin, M. R. Infrared and skin: friend or foe. J. Photochem. Photobiol. B 155, 78–85 (2016).Article 
CAS 
PubMed 

Google Scholar 
Su, Y. et al. Close-packed nanowire–bacteria hybrids for efficient solar-driven CO2 fixation. Joule 4, 800–811 (2020).Article 
CAS 

Google Scholar 
Moore, E. E. et al. Understanding the local chemical environment of bioelectrocatalysis. Proc. Natl Acad. Sci. USA 119, e2114097119 (2022).Article 

Google Scholar 
Möller, B., Oßmer, R., Howard, B. H., Gottschalk, G. & Hippe, H. Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139, 388–396 (1984).Article 

Google Scholar 
Salimijazi, F., Kim, J., Schmitz, A., Grenville, R. & Barstow, B. Constraints on the efficiency of electromicrobial production. Joule https://doi.org/10.1016/j.joule.2020.08.010 (2020).Jourdin, L. & Burdyny, T. Microbial electrosynthesis: where do we go from here? Trends Biotechnol. 39, 359–369 (2021).Article 
CAS 
PubMed 

Google Scholar 
Prévoteau, A., Carvajal-Arroyo, J. M., Ganigué, R. & Rabaey, K. Microbial electrosynthesis from CO2: forever a promise? Curr. Opin. Biotechnol. 62, 48–57 (2020).Article 
PubMed 

Google Scholar 
Mccuskey, S. R., Su, Y., Leifert, D., Moreland, A. S. & Bazan, G. C. Living bioelectrochemical composites. Adv. Mater. 32, 1908178 (2020).Article 
CAS 

Google Scholar 
Qian, J. et al. Barcoded microbial system for high-resolution object provenance. Science 368, 1135–1140 (2020).Article 
CAS 
PubMed 

Google Scholar 
Luo, L. et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 144, 7720–7730 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. Tuning the product selectivity toward the high yield of glyceric acid in Pt−CeO2/CNT electrocatalyzed oxidation of glycerol. ChemCatChem 14, e202200509 (2022).Article 
CAS 

Google Scholar 
Luo, J. et al. Bipolar membrane-assisted solar water splitting in optimal pH. Adv. Energy Mater. 6, 1600100 (2016).Article 

Google Scholar 
Kong, Q. et al. Directed assembly of nanoparticle catalysts on nanowire photoelectrodes for photoelectrochemical CO2 reduction. Nano Lett. 16, 5675–5680 (2016).Article 
CAS 
PubMed 

Google Scholar 
Seger, B. et al. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 135, 1057–1064 (2013).Article 
CAS 
PubMed 

Google Scholar 
Yu, Y. et al. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2, 17045 (2017).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles