Chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes: access to chiral quaternary cyclopropanes

Franke, R., Selent, D. & Börner, A. Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).Article 
CAS 
PubMed 

Google Scholar 
Deng, Y., Wang, H., Sun, Y. & Wang, X. Principles and applications of enantioselective hydroformylation of terminal disubstituted alkenes. ACS Catal. 5, 6828–6837 (2015).Article 
CAS 

Google Scholar 
Klosin, J. & Landis, C. R. Ligands for practical rhodium-catalyzed asymmetric hydroformylation. Acc. Chem. Res. 40, 1251–1259 (2007).Article 
CAS 
PubMed 

Google Scholar 
Brezny, A. C. & Landis, C. R. Recent developments in the scope, practicality, and mechanistic understanding of enantioselective hydroformylation. Acc. Chem. Res. 51, 2344–2354 (2018).Article 
CAS 
PubMed 

Google Scholar 
Breit, B. Synthetic aspects of stereoselective hydroformylation. Acc. Chem. Res. 36, 264–275 (2003).Article 
CAS 
PubMed 

Google Scholar 
Ning, Y., Ohwada, T. & Chen, F.-E. Transition metal-catalyzed branch-selective hydroformylation of olefins in organic synthesis. Green. Synth. Catal. 2, 247–266 (2021).Article 

Google Scholar 
Jia, X., Wang, Z., Xia, C. & Ding, K. Recent advances in rh-catalyzed asymmetric hydroformylation of olefins. Chin. J. Org. Chem. 33, 1369–1381 (2013).Article 
CAS 

Google Scholar 
Fernández-Pérez, H., Etayo, P., Panossian, A. & Vidal-Ferran, A. Phosphine-phosphinite and phosphine-phosphite ligands: preparation and applications in asymmetric catalysis. Chem. Rev. 111, 2119–2176 (2011).Article 
PubMed 

Google Scholar 
Chikkali, S. H., van der Vlugt, J. I. & Reek, J. N. H. Hybrid diphosphorus ligands in rhodium catalysed asymmetric hydroformylation. Coord. Chem. Rev. 262, 1–15 (2014).Article 
CAS 

Google Scholar 
Chakrabortty, S., Almasalma, A. A. & de Vries, J. G. Recent developments in asymmetric hydroformylation. Catal. Sci. Technol. 11, 5388–5411 (2021).Article 
CAS 

Google Scholar 
Sakai, N., Mano, S., Nozaki, K. & Takaya, H. Highly enantioselective hydroformylation of olefins catalyzed by new phosphinephosphite-rh(i) complexes. J. Am. Chem. Soc. 115, 7033–7034 (1993).Article 
CAS 

Google Scholar 
Buisman, G. J. H., Vos, E. J., Kamer, P. C. J. & van Leeuwen, P. W. N. M. Hydridorhodium diphosphite catalysts in the asymmetric hydroformylation of styrene. J. Chem. Soc., Dalton Trans. 409–417 (1995).Clark, T. P., Landis, C. R., Freed, S. L., Klosin, J. & Abboud, K. A. Highly active, regioselective, and enantioselective hydroformylation with Rh catalysts ligated by Bis-3,4-diazaphospholanes. J. Am. Chem. Soc. 127, 5040–5042 (2005).Article 
CAS 
PubMed 

Google Scholar 
Axtell, A. T. et al. Highly regio- and enantioselective asymmetric hydroformylation of olefins mediated by 2,5-disubstituted phospholane ligands. Angew. Chem. Int. Ed. 44, 5834–5838 (2005).Article 
CAS 

Google Scholar 
Yan, Y. & Zhang, X. A hybrid phosphorus ligand for highly enantioselective asymmetric hydroformylation. J. Am. Chem. Soc. 128, 7198–7202 (2006).Article 
CAS 
PubMed 

Google Scholar 
Zhang, D., Wen, J. & Zhang, X. Construction of a quaternary stereogenic center by asymmetric hydroformylation: a straightforward method to prepare chiral alpha-quaternary amino acids. Chem. Sci. 13, 7215–7223 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Noonan, G. M., Fuentes, J. A., Cobley, C. J. & Clarke, M. L. An asymmetric hydroformylation catalyst that delivers branched aldehydes from alkyl alkenes. Angew. Chem. Int. Ed. 51, 2477–2480 (2012).Article 
CAS 

Google Scholar 
Schmitz, C., Holthusen, K., Leitner, W. & Franciò, G. Highly regio- and enantioselective hydroformylation of vinyl esters using bidentate phosphine, p-chiral phosphorodiamidite ligands. ACS Catal. 6, 1584–1589 (2016).Article 
CAS 

Google Scholar 
Chikkali, S. H., Bellini, R., de Bruin, B., van der Vlugt, J. I. & Reek, J. N. Highly selective asymmetric Rh-catalyzed hydroformylation of heterocyclic olefins. J. Am. Chem. Soc. 134, 6607–6616 (2012).Article 
CAS 
PubMed 

Google Scholar 
Wang, X. & Buchwald, S. L. Rh-catalyzed asymmetric hydroformylation of functionalized 1,1-disubstituted olefins. J. Am. Chem. Soc. 133, 19080–19083 (2011).Article 
CAS 
PubMed 

Google Scholar 
Breeden, S., Cole-Hamilton, D. J., Foster, D. F., Schwarz, G. J. & Wills, M. Rhodium-mediated asymmetric hydroformylation with a novel Bis(diazaphospholidine) Ligand. Angew. Chem. Int. Ed. 39, 4106–4108 (2000).Article 
ADS 
CAS 

Google Scholar 
Jouffroy, M. et al. Confining phosphanes derived from cyclodextrins for efficient regio- and enantioselective hydroformylation. Angew. Chem. Int. Ed. 53, 3937–3940 (2014).Article 
CAS 

Google Scholar 
Franciò, G., Faraone, F. & Leitner, W. Asymmetric catalysis with chiral phosphane/ phosphoramidite ligands derived from quinoline (QUINAPHOS). Angew. Chem. Int. Ed. 39, 1428–1430 (2000).Article 

Google Scholar 
Zhao, B., Peng, X., Wang, Z., Xia, C. & Ding, K. Modular chiral bidentate phosphonites: design, synthesis, and application in catalytic asymmetric hydroformylation reactions. Chem. Eur. J. 14, 7847–7857 (2008).Article 
CAS 
PubMed 

Google Scholar 
Eshon, J., Foarta, F., Landis, C. R. & Schomaker, J. M. α-tetrasubstituted aldehydes through electronic and strain-controlled branch-selective stereoselective hydroformylation. J. Org. Chem. 83, 10207–10220 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, S., Zhang, D., Zhang, R., Bai, S. T. & Zhang, X. Rhodium-catalyzed chemo-, regio- and enantioselective hydroformylation of cyclopropyl-functionalized trisubstituted alkenes. Angew. Chem. Int. Ed. 61, e202206577 (2022).Article 
ADS 
CAS 

Google Scholar 
Clarke, M. L. & Roff, G. J. Highly regioselective rhodium-catalysed hydroformylation of unsaturated esters: the first practical method for quaternary selective carbonylation. Chem. Eur. J. 12, 7978–7986 (2006).Article 
CAS 
PubMed 

Google Scholar 
Lebel, H., Marcoux, J.-F., Molinaro, C. & Charette, A. B. Stereoselective cyclopropanation reactions. Chem. Rev. 103, 977–1050 (2003).Article 
CAS 
PubMed 

Google Scholar 
Reissig, H.-U. & Zimmer, R. Donor-acceptor-substituted cyclopropane derivatives and their application in organic synthesis. Chem. Rev. 103, 1151–1196 (2003).Article 
CAS 
PubMed 

Google Scholar 
Wessjohann, L. A. & Brandt, W. Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem. Rev. 103, 1625–1647 (2003).Article 
CAS 
PubMed 

Google Scholar 
Talele, T. T. The “Cyclopropyl Fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules. J. Med. Chem. 59, 8712–8756 (2016).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ebner, C. & Carreira, E. M. Cyclopropanation strategies in recent total syntheses. Chem. Rev. 117, 11651–11679 (2017).Article 
CAS 
PubMed 

Google Scholar 
Dian, L. & Marek, I. Asymmetric preparation of polysubstituted cyclopropanes based on direct functionalization of achiral three-membered carbocycles. Chem. Rev. 118, 8415–8434 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wu, W., Lin, Z. & Jiang, H. Recent advances in the synthesis of cyclopropanes. Org. Biomol. Chem. 16, 7315–7329 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pons, A., Delion, L., Poisson, T., Charette, A. B. & Jubault, P. Asymmetric synthesis of fluoro, fluoromethyl, difluoromethyl, and trifluoromethylcyclopropanes. Acc. Chem. Res. 54, 2969–2990 (2021).Article 
CAS 
PubMed 

Google Scholar 
Simmons, H. E. & Smith, R. D. A new synthesis of cyclopropanes from olefins. J. Am. Chem. Soc. 80, 5323–5324 (1958).Article 
CAS 

Google Scholar 
Simmons, H. E. & Smith, R. D. A new synthesis of cyclopropanes. J. Am. Chem. Soc. 81, 4256–4264 (1959).Article 
CAS 

Google Scholar 
Shen, J. J. et al. Enantioselective iron-catalyzed intramolecular cyclopropanation reactions. Angew. Chem. Int. Ed. 53, 13188–13191 (2014).Article 
CAS 

Google Scholar 
Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rubina, M., Rubin, M. & Gevorgyan, V. Catalytic enantioselective hydroboration of cyclopropenes. J. Am. Chem. Soc. 125, 7198–7199 (2003).Article 
CAS 
PubMed 

Google Scholar 
Sherrill, W. M. & Rubin, M. Rhodium-catalyzed hydroformylation of cyclopropenes. J. Am. Chem. Soc. 130, 13804–13809 (2008).Article 
CAS 
PubMed 

Google Scholar 
Coulter, M. M., Kou, K. G., Galligan, B. & Dong, V. M. Regio- and enantioselective intermolecular hydroacylation: substrate-directed addition of salicylaldehydes to homoallylic sulfides. J. Am. Chem. Soc. 132, 16330–16333 (2010).Article 
CAS 
PubMed 

Google Scholar 
Liu, F., Bugaut, X., Schedler, M., Fröhlich, R. & Glorius, F. Designing N-heterocyclic carbenes: simultaneous enhancement of reactivity and enantioselectivity in the asymmetric hydroacylation of cyclopropenes. Angew. Chem. Int. Ed. 50, 12626–12630 (2011).Article 
CAS 

Google Scholar 
Parra, A. et al. Copper-catalyzed diastereo- and enantioselective desymmetrization of cyclopropenes: synthesis of cyclopropylboronates. J. Am. Chem. Soc. 136, 15833–15836 (2014).Article 
CAS 
PubMed 

Google Scholar 
Teng, H.-L. et al. Synthesis of chiral aminocyclopropanes by rare-earth-metal-catalyzed cyclopropene hydroamination. Angew. Chem. Int. Ed. 55, 15406–15410 (2016).Article 
CAS 

Google Scholar 
Luo, Y., Teng, H. L., Nishiura, M. & Hou, Z. Asymmetric Yttrium-Catalyzed C(sp(3))-H addition of 2-methyl azaarenes to cyclopropenes. Angew. Chem. Int. Ed. 56, 9207–9210 (2017).Article 
CAS 

Google Scholar 
Teng, H. L., Luo, Y., Nishiura, M. & Hou, Z. Diastereodivergent asymmetric carboamination/annulation of cyclopropenes with aminoalkenes by chiral lanthanum catalysts. J. Am. Chem. Soc. 139, 16506–16509 (2017).Article 
CAS 
PubMed 

Google Scholar 
Dian, L. & Marek, I. Rhodium-catalyzed arylation of cyclopropenes based on asymmetric direct functionalization of three-membered carbocycles. Angew. Chem. Int. Ed. 57, 3682–3686 (2018).Article 
CAS 

Google Scholar 
Sommer, H. & Marek, I. Diastereo- and enantioselective copper catalyzed hydroallylation of disubstituted cyclopropenes. Chem. Sci. 9, 6503–6508 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Teng, H.-L., Ma, Y., Zhan, G., Nishiura, M. & Hou, Z. Asymmetric C(sp)–H addition of terminal alkynes to cyclopropenes by a chiral gadolinium catalyst. ACS Catal. 8, 4705–4709 (2018).Article 
CAS 

Google Scholar 
Zhang, H., Huang, W., Wang, T. & Meng, F. Cobalt-catalyzed diastereo- and enantioselective hydroalkenylation of cyclopropenes with alkenylboronic acids. Angew. Chem. Int. Ed. 58, 11049–11053 (2019).Article 
CAS 

Google Scholar 
Zhao, Z.-Y. et al. Enantioselective rhodium-catalyzed desymmetric hydrosilylation of cyclopropenes. ACS Catal. 9, 9110–9116 (2019).Article 
CAS 

Google Scholar 
Dian, L. & Marek, I. Pd-catalyzed enantioselective hydroalkynylation of cyclopropenes. ACS Catal. 10, 1289–1293 (2020).Article 
CAS 
PubMed 

Google Scholar 
Huang, W. & Meng, F. Cobalt-catalyzed diastereo- and enantioselective hydroalkylation of cyclopropenes with cobalt homoenolates. Angew. Chem. Int. Ed. 60, 2694–2698 (2021).Article 
CAS 

Google Scholar 
Nie, S., Lu, A., Kuker, E. L. & Dong, V. M. Enantioselective hydrothiolation: diverging cyclopropenes through ligand control. J. Am. Chem. Soc. 143, 6176–6184 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, Q., Chen, Y., Zhou, X., Dai, L. & Lu, Y. Nickel-hydride-catalyzed diastereo- and enantioselective hydroalkylation of cyclopropenes. Angew. Chem. Int. Ed. 61, e202210560 (2022).Article 
CAS 

Google Scholar 
Cai, S.-Z. et al. Nickel-catalyzed enantioselective hydrothiocarbonylation of cyclopropenes. Org. Lett. 25, 8683–8687 (2023).Article 
CAS 
PubMed 

Google Scholar 
Daniels, B. S. et al. Copper-phosphido catalysis: enantioselective addition of phosphines to cyclopropenes. Angew. Chem. Int. Ed. 62, e202306511 (2023).Article 
CAS 

Google Scholar 
Lin, X. et al. Diastereo- and enantioselective hydrophosphination of cyclopropenes under lanthanocene catalysis. Angew. Chem. Int. Ed. 62, e202308488 (2023).Article 
ADS 
CAS 

Google Scholar 
Zhang, S., Jiang, N., Xiao, J.-Z., Lin, G.-Q. & Yin, L. Copper(I)-catalyzed asymmetric hydrophosphination of 3,3-disubstituted cyclopropenes. Angew. Chem. Int. Ed. 62, e202218798 (2023).Article 
CAS 

Google Scholar 
Zhang, Z.-L. et al. Cobalt-catalyzed facial-selective hydroalkylation of cyclopropenes. Angew. Chem. Int. Ed. 62, e202306381 (2023).Article 
CAS 

Google Scholar 
Sunoj, R. B. Transition state models for understanding the origin of chiral induction in asymmetric catalysis. Acc. Chem. Res. 49, 1019–1028 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dangat, Y., Popli, S. & Sunoj, R. B. Unraveling the Importance of Noncovalent Interactions in Asymmetric Hydroformylation Reactions. J. Am. Chem. Soc. 142, 17079–17092 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ghosh, S. et al. Role of noncovalent interactions in inducing high enantioselectivity in an alcohol reductive deoxygenation reaction involving a planar carbocationic intermediate. J. Am. Chem. Soc. 145, 2884–2900 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lei, M., Wang, Z., Du, X., Zhang, X. & Tang, Y. Asymmetric hydroformylation catalyzed by RhH(CO)2[(R,S)-Yanphos]: mechanism and origin of enantioselectivity. J. Phys. Chem. A. 118, 8960–8970 (2014).Article 
CAS 
PubMed 

Google Scholar 
Szlapa, E. N. & Harvey, J. N. Computational modelling of selectivity in cobalt-catalyzed propene hydroformylation. Chem. Eur. J. 24, 17096–17104 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhang, X. et al. Synthesis and application of modular phosphine-phosphoramidite ligands in asymmetric hydroformylation: structure-selectivity relationship. Chem. Eur. J. 16, 871–877 (2010).Article 
CAS 
PubMed 

Google Scholar 
Wei, B., Chen, C., You, C., Lv, H. & Zhang, X. Efficient synthesis of (S,R)-Bn-Yanphos and Rh/(S,R)-Bn-Yanphos catalyzed asymmetric hydroformylation of vinyl heteroarenes. Org. Chem. Front. 4, 288–291 (2017).Article 
CAS 

Google Scholar 
You, C. et al. Design and application of hybrid phosphorus ligands for enantioselective rh-catalyzed anti-markovnikov hydroformylation of unfunctionalized 1,1-disubstituted alkenes. J. Am. Chem. Soc. 140, 4977–4981 (2018).Article 
CAS 
PubMed 

Google Scholar 
You, C., Li, S., Li, X., Lv, H. & Zhang, X. Enantioselective Rh-catalyzed anti-markovnikov hydroformylation of 1,1-disubstituted allylic alcohols and amines: an efficient route to chiral lactones and lactams. ACS Catal. 9, 8529–8533 (2019).Article 
CAS 

Google Scholar 
Li, S. et al. Rhodium-catalyzed enantioselective anti-markovnikov hydroformylation of α-substituted acryl acid derivatives. Org. Lett. 22, 1108–1112 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhang, D., You, C., Li, X., Wen, J. & Zhang, X. Asymmetric linear-selective hydroformylation of 1,1-dialkyl olefins assisted by a steric-auxiliary strategy.Org. Lett. 22, 4523–4526 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Iu, L., Fuentes, J. A., Janka, M. E., Fontenot, K. J. & Clarke, M. L. High iso aldehyde selectivity in the hydroformylation of short-chain alkenes. Angew. Chem. Int. Ed. 58, 2120–2124 (2019).Article 
CAS 

Google Scholar 
Jongkind, L. J., Elemans, J. & Reek, J. N. H. Cofactor controlled encapsulation of a rhodium hydroformylation catalyst. Angew. Chem. Int. Ed. 58, 2696–2699 (2019).Article 
CAS 

Google Scholar 
Lightburn, T. E., Dombrowski, M. T. & Tan, K. L. Catalytic scaffolding ligands an efficient strategy for directing reactions. J. Am. Chem. Soc. 130, 9210–9211 (2008).Article 
CAS 
PubMed 

Google Scholar 
Breit, B. & Zahn, S. K. Domino hydroformylation-wittig reactions. Angew. Chem. Int. Ed. 38, 969–971 (1999).Article 
CAS 

Google Scholar 
Wong, G. W. & Landis, C. R. Iterative asymmetric hydroformylation/Wittig olefination sequence. Angew. Chem. Int. Ed. 52, 1564–1567 (2013).Article 
CAS 

Google Scholar 
Watkins, A. L. & Landis, C. R. Origin of Pressure Effects on Regioselectivity and Enantioselectivity in the Rhodium-Catalyzed Hydroformylation of Styrene with (S,S,S)-BisDiazaphos. J. Am. Chem. Soc. 132, 10306–10317 (2010).Article 
CAS 
PubMed 

Google Scholar 
Brezny, A. C. & Landis, C. R. Unexpected CO dependencies, catalyst speciation, and single turnover hydrogenolysis studies of hydroformylation via high pressure NMR spectroscopy. J. Am. Chem. Soc. 139, 2778–2785 (2017).Article 
CAS 
PubMed 

Google Scholar 
Xu, K., Zheng, X., Wang, Z. & Zhang, X. Easily accessible and highly tunable bisphosphine ligands for asymmetric hydroformylation of terminal and internal alkenes. Chem. Eur. J. 20, 4357–4362 (2014).Article 
CAS 
PubMed 

Google Scholar 
Aguado-Ullate, S., Guasch, L., Urbano-Cuadrado, M., Bo, C. & Carbo, J. J. 3D-QSPR models for predicting the enantioselectivity and the activity for asymmetric hydroformylation of styrene catalyzed by Rh−diphosphane. Catal. Sci. Technol. 2, 1694–1704 (2012).Article 
CAS 

Google Scholar 
Phanopoulos, A. & Nozaki, K. Branched-selective hydroformylation of nonactivated olefins using an n-triphos/rh catalyst. ACS Catal. 8, 5799–5809 (2018).Article 
CAS 

Google Scholar 
Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distor-tion/interaction-activation strain model. Angew. Chem., Int. Ed. 56, 10070–10086 (2017).Article 
CAS 

Google Scholar 
Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).Article 
CAS 

Google Scholar 
Parthasarathi, R., Subramanian, V. & Sathyamurthy, N. Hydrogen bonding without borders: an atoms-in-molecules perspective. J. Phys. Chem. A. 110, 3349–3351 (2006).Article 
CAS 
PubMed 

Google Scholar 
Prakash, M., Samy, G. K. & Subramanian, V. Benzene−Water (BZWn (n = 1 − 10)) Clusters. J. Phys. Chem. A. 113, 13845–13852 (2009).Article 
CAS 
PubMed 

Google Scholar 
Danovich, D. et al. Understanding the Nature of the CH···HC Interactions in Alkanes. J. Chem. Theory Comput. 9, 1977–1991 (2013).Article 
CAS 
PubMed 

Google Scholar 
Singh, S. & Sunoj, R. B. Chapter One – Computational asymmetric catalysis: On the origin of stereoselectivity in catalytic reactions. Adv. Phys. Org. Chem. (eds. Williams, I. H. & Williams, N. H.) 53, 1–27 (2019).

Hot Topics

Related Articles