In-vitro cytotoxicity of biosynthesized nanoceria using Eucalyptus camaldulensis leaves extract against MCF-7 breast cancer cell line

Das, J., Choi, Y.-J., Han, J. W., Reza, A. M. M. T. & Kim, J.-H. Nanoceria-mediated delivery of doxorubicin enhances the anti-tumour efficiency in ovarian cancer cells via apoptosis. Sci. Rep. https://doi.org/10.1038/s41598-017-09876-w (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Latif, M. M. et al. Synthesis and antimicrobial activities of manganese (Mn) and iron (Fe) co-doped cerium dioxide (CeO2) Nanoparticles. Phys. B Condens. Matter 600, 412562. https://doi.org/10.1016/j.physb.2020.412562 (2021).Article 
CAS 

Google Scholar 
Zheng, K. et al. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Mater. Today Bio 5, 100041. https://doi.org/10.1016/j.mtbio.2020.100041 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Nusrath, K. & Muraleedharan, K. Synthesis, evaluation of kinetic characteristics and investigation of apoptosis of Cu2+-modified ceria nano discs. J. Rare Earths 36, 1050–1059. https://doi.org/10.1016/j.jre.2018.03.022 (2018).Article 
CAS 

Google Scholar 
Gunawan, C. et al. Oxygen-vacancy engineering of cerium-oxide nanoparticles for antioxidant activity. ACS Omega 4, 9473–9479. https://doi.org/10.1021/acsomega.9b00521 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Opitz, P. et al. Defect-controlled halogenating properties of lanthanide-doped ceria nanozymes. Nanoscale 14, 4740–4752. https://doi.org/10.1039/D2NR00501H (2022).Article 
CAS 
PubMed 

Google Scholar 
Bhardwaj, B. K. et al. Current update on nanotechnology-based approaches in ovarian cancer therapy. Reprod. Sci. 30, 335–349. https://doi.org/10.1007/s43032-022-00968-1 (2023).Article 
CAS 
PubMed 

Google Scholar 
Tang, J. L. Y., Moonshi, S. S. & Ta, H. T. Nanoceria: An innovative strategy for cancer treatment. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-023-04694-y (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Saranya, J. et al. Cerium oxide/graphene oxide hybrid: Synthesis, characterization, and evaluation of anticancer activity in a breast cancer cell line (MCF-7). Biomedicines 11, 531. https://doi.org/10.3390/biomedicines11020531 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alrobaian, M. Pegylated nanoceria: A versatile nanomaterial for noninvasive treatment of retinal diseases. Saudi Pharm. J. 31, 101761. https://doi.org/10.1016/j.jsps.2023.101761 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sadidi, H. et al. Cerium oxide nanoparticles (nanoceria): Hopes in soft tissue engineering. Molecules 25, 4559. https://doi.org/10.3390/molecules25194559 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lan, Y. et al. Insight into the contributions of surface oxygen vacancies on the promoted photocatalytic property of nanoceria. Nanomaterials (Basel) 11, 1168. https://doi.org/10.3390/nano11051168 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sulthana, S. et al. Combination therapy of NSCLC using Hsp90 inhibitor and doxorubicin carrying functional nanoceria. Mol. Pharm. 14, 875–884. https://doi.org/10.1021/acs.molpharmaceut.6b01076 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lucky, S. S., Soo, K. C. & Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 115, 1990–2042. https://doi.org/10.1021/cr5004198 (2015).Article 
CAS 
PubMed 

Google Scholar 
Afifi, A. M. et al. Causes of death after breast cancer diagnosis: A US population-based analysis. Cancer 126, 1559–1567. https://doi.org/10.1002/cncr.32648 (2020).Article 
PubMed 

Google Scholar 
Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48. https://doi.org/10.3322/caac.21763 (2023).Article 
PubMed 

Google Scholar 
Gharoonpour, A., Simiyari, D., Yousefzadeh, A., Badragheh, F. & Rahmati, M. Autophagy modulation in breast cancer utilizing nanomaterials and nanoparticles. Front. Oncol. 13, 1150492. https://doi.org/10.3389/fonc.2023.1150492 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weissleder, R. Molecular imaging in cancer. Science 312, 1168–1171. https://doi.org/10.1126/science.1125949 (2006).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Barazzuol, L., Coppes, R. P. & van Luijk, P. Prevention and treatment of radiotherapy-induced side effects. Mol. Oncol. 14, 1538–1554. https://doi.org/10.1002/1878-0261.12750 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ofori, S., Heddon, M. A. & Griffis, M. Toward a risk-based assessment of the adult cancer survivor: Late effects of chemotherapy. Hosp. Pract. 1995(37), 113–120. https://doi.org/10.3810/hp.2009.12.264 (2009).Article 

Google Scholar 
Hickey, B. E. & Lehman, M. Partial breast irradiation versus whole breast radiotherapy for early breast cancer. Cochrane Libr. https://doi.org/10.1002/14651858.cd007077.pub4 (2021).Article 

Google Scholar 
Tanaka, T. et al. Nanotechnology for breast cancer therapy. Biomed. Microdevices 11, 49–63. https://doi.org/10.1007/s10544-008-9209-0 (2009).Article 
CAS 
PubMed 

Google Scholar 
Sujana, M. G., Chattopadyay, K. K. & Anand, S. Characterization and optical properties of nano-ceria synthesized by surfactant-mediated precipitation technique in mixed solvent system. Appl. Surf. Sci. 254, 7405–7409. https://doi.org/10.1016/j.apsusc.2008.05.341 (2008).Article 
ADS 
CAS 

Google Scholar 
Chavhan, M. P., Lu, C.-H. & Som, S. Urea and surfactant assisted hydrothermal growth of ceria nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 601, 124944. https://doi.org/10.1016/j.colsurfa.2020.124944 (2020).Article 
CAS 

Google Scholar 
Hosokawa, S., Shimamura, K. & Inoue, M. Solvothermal synthesis of ceria nanoparticles with large surface areas. Mater. Res. Bull. 46, 1928–1932. https://doi.org/10.1016/j.materresbull.2011.07.025 (2011).Article 
CAS 

Google Scholar 
Hosseini, M., Amjadi, I., Mohajeri, M. & Mozafari, M. Sol–gel synthesis, physico-chemical and biological characterization of cerium oxide/polyallylamine nanoparticles. Polymers (Basel) 12, 1444. https://doi.org/10.3390/polym12071444 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thakur, N., Manna, P. & Das, J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J. Nanobiotechnol. https://doi.org/10.1186/s12951-019-0516-9 (2019).Article 

Google Scholar 
Singh, S. B., Ranjan, P. & Haghi, A. K. Materials Modeling for Macro to Micro/Nano Scale Systems (Apple Academic Press, 2022).Book 

Google Scholar 
He, J. et al. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques. Appl. Surf. Sci. 402, 469–477. https://doi.org/10.1016/j.apsusc.2017.01.149 (2017).Article 
ADS 
CAS 

Google Scholar 
Tarasenka, N. et al. Nanoceria and hybrid silver–ceria nanoparticles fabricated by liquid-mediated laser ablation as antimicrobial agents. Nano Struct. Nano Objects 34, 100971. https://doi.org/10.1016/j.nanoso.2023.100971 (2023).Article 
CAS 

Google Scholar 
Karunakaran, G., Sudha, K. G., Ali, S. & Cho, E.-B. Biosynthesis of nanoparticles from various biological sources and its biomedical applications. Molecules 28, 4527. https://doi.org/10.3390/molecules28114527 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alghoraibi, I. et al. Aqueous extract of Eucalyptus camaldulensisleaves as reducing and capping agent in biosynthesis of silver nanoparticles. Inorg. Nano Met. Chem. 50, 895–902. https://doi.org/10.1080/24701556.2020.1728315 (2020).Article 
CAS 

Google Scholar 
Jamjah, A. et al. Dynamic motions of ligands around the metal centers afford a fidget spinner-type AIE luminogen. Inorg. Chem. 63, 3335–3347. https://doi.org/10.1021/acs.inorgchem.3c03766 (2024).Article 
CAS 
PubMed 

Google Scholar 
Fereydouni, N. et al. Nanoceria: Polyphenol-based green synthesis, mechanism of formation, and evaluation of their cytotoxicity on L929 and HFFF2 cell. J. Mol. Struct. 1186, 23–30. https://doi.org/10.1016/j.molstruc.2019.03.014 (2019).Article 
ADS 
CAS 

Google Scholar 
Mohamed, H. E. A. et al. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine (Lond.) 15, 467–488. https://doi.org/10.2217/nnm-2019-0368 (2020).Article 
CAS 
PubMed 

Google Scholar 
Sharmila, G. et al. Green synthesis, characterization and biological activities of nanoceria. Ceram. Int. 45, 12382–12386. https://doi.org/10.1016/j.ceramint.2019.03.164 (2019).Article 
CAS 

Google Scholar 
Darroudi, M. et al. Green synthesis and evaluation of metabolic activity of starch mediated nanoceria. Ceram. Int. 40, 2041–2045. https://doi.org/10.1016/j.ceramint.2013.07.116 (2014).Article 
CAS 

Google Scholar 
Hameed, S. et al. Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine (Lond.) 14, 655–673. https://doi.org/10.2217/nnm-2018-0279 (2019).Article 
CAS 
PubMed 

Google Scholar 
Rezaee, P. et al. DFT study on CO2 capture using boron, nitrogen, and phosphorus-doped C20 in the presence of an electric field. Sci. Rep. https://doi.org/10.1038/s41598-024-62301-x (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Mohammed, A. E. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pac. J. Trop. Biomed. 5, 382–386. https://doi.org/10.1016/S2221-1691(15)30373-7 (2015).Article 
CAS 

Google Scholar 
Jan, H. et al. The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Adv. 10, 19219–19231. https://doi.org/10.1039/D0RA01971B (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Foroutan, Z. et al. Plant-based synthesis of cerium oxide nanoparticles as a drug delivery system in improving the anticancer effects of free temozolomide in glioblastoma (U87) cells. Ceram. Int. 48, 30441–30450. https://doi.org/10.1016/j.ceramint.2022.06.322 (2022).Article 
CAS 

Google Scholar 
Adeniyi, B. A., Lawal, T. O. & Olaleye, S. B. Antimicrobial and gastroprotective activities of Eucalyptus camaldulensis (Myrtaceae) crude extracts. J. Biol. Sci. (Faisalabad) 6, 1141–1145. https://doi.org/10.3923/jbs.2006.1141.1145 (2006).Article 

Google Scholar 
Safdar, A., Mohamed, H. E. A., Hkiri, K., Muhaymin, A. & Maaza, M. Green synthesis of cobalt oxide nanoparticles using Hyphaene thebaica fruit extract and their photocatalytic application. Appl. Sci. (Basel) 13, 9082. https://doi.org/10.3390/app13169082 (2023).Article 
CAS 

Google Scholar 
Pinna, A. et al. Ceria nanoparticles for the treatment of Parkinson-like diseases induced by chronic manganese intoxication. RSC Adv. 5, 20432–20439. https://doi.org/10.1039/C4RA16265J (2015).Article 
ADS 
MathSciNet 
CAS 

Google Scholar 
Behzadi, M., Arasteh, S. & Bagheri, M. Palmitoylation of membrane-penetrating magainin derivatives reinforces necroptosis in A549 cells dependent on peptide conformational propensities. ACS Appl. Mater. Interfaces 12, 56815–56829. https://doi.org/10.1021/acsami.0c17648 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yao, W. et al. Folic acid-conjugated soybean protein-based nanoparticles mediate efficient antitumor ability in vitro. J. Biomater. Appl. 31, 832–843. https://doi.org/10.1177/0885328216679571 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hu, R. et al. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano 16, 15959–15976. https://doi.org/10.1021/acsnano.2c03422 (2022).Article 
CAS 
PubMed 

Google Scholar 
Parvathy, S., Manjula, G., Balachandar, R. & Subbaiya, R. Green synthesis and characterization of cerium oxide nanoparticles from Artabotrys hexapetalus leaf extract and its antibacterial and anticancer properties. Mater. Lett. 314, 131811. https://doi.org/10.1016/j.matlet.2022.131811 (2022).Article 
CAS 

Google Scholar 
Monica Ahmad, N. & Aishah Hasan, N. Synthesis of green cerium oxide nanoparticles using plant waste from Colocasia esculenta for seed germination of mung bean (Vigna radiata). J. Nanotechnol. 2023, 1–9. https://doi.org/10.1155/2023/9572025 (2023).Article 
CAS 

Google Scholar 
Dakka, A. et al. Optical properties of Ag–TiO(2) nanocermet films prepared by cosputtering and multilayer deposition techniques. Appl. Opt. 39, 2745–2753 (2000).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ahmad, T. et al. Phytosynthesis of cerium oxide nanoparticles and investigation of their photocatalytic potential for degradation of phenol under visible light. J. Mol. Struct. 1217, 128292. https://doi.org/10.1016/j.molstruc.2020.128292 (2020).Article 
CAS 

Google Scholar 
Sonali, J. M. I. et al. Application of a novel nanocomposite containing micro-nutrient solubilizing bacterial strains and CeO2 nanocomposite as bio-fertilizer. Chemosphere 286, 131800. https://doi.org/10.1016/j.chemosphere.2021.131800 (2022).Article 
CAS 

Google Scholar 
Lin, W., Huang, Y.-W., Zhou, X.-D. & Ma, Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol. 25, 451–457. https://doi.org/10.1080/10915810600959543 (2006).Article 
CAS 
PubMed 

Google Scholar 
Panneerselvam, H. M., Riyas, Z. M., Prabhu, M. R., Sasikumar, M. & Jeyasingh, E. In vitro cytotoxicity assessment of biosynthesized nanoceria against MCF-7 breast cancer cell lines. Appl. Surf. Sci. Adv. 21, 100603. https://doi.org/10.1016/j.apsadv.2024.100603 (2024).Article 

Google Scholar 
Sridharan, M. et al. Synthesis, characterization and evaluation of biosynthesized Cerium oxide nanoparticle for its anticancer activity on breast cancer cell (MCF 7). Mater. Today 36, 914–919. https://doi.org/10.1016/j.matpr.2020.07.031 (2021).Article 
CAS 

Google Scholar 
Alkhafagi, J. K. K., Tabrizi, M. H. & Ghobeh, M. The anticancer impact of Ananas leaves extract-synthesized folate-linked chitosan coated CeO2 nanoparticles on human breast cancer cells. J. Polym. Environ. 31, 4410–4420. https://doi.org/10.1007/s10924-023-02904-z (2023).Article 
CAS 

Google Scholar 
Hublikar, L. V., Ganachari, S. V. & Patil, V. B. Phytofabrication of silver nanoparticles using Averrhoa bilimbi leaf extract for anticancer activity. Nanoscale Adv. 5, 4149–4157. https://doi.org/10.1039/D3NA00313B (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hublikar, L. V. et al. Biogenesis of silver nanoparticles and its multifunctional anti-corrosion and anticancer studies. Coatings 11, 1215. https://doi.org/10.3390/coatings11101215 (2021).Article 
CAS 

Google Scholar 
Patil, S. B., Hublikar, L. V., Raghavendra, N., Shanbhog, C. & Kamble, A. Synthesis and exploration of anticancer activity of silver nanoparticles using Pandanus amaryllifolius Roxb. leaf extract: Promising approach against lung cancer and breast cancer cell lines. Biologia (Bratisl.) 76, 3533–3545. https://doi.org/10.1007/s11756-021-00878-8 (2021).Article 
CAS 

Google Scholar 
Fadzil, N. A., Rahim, M. H. & Maniam, G. P. Brief review of ceria and modified ceria: synthesis and application. Mater. Res. Express 5, 085019. https://doi.org/10.1088/2053-1591/aad2b5 (2018).Article 
ADS 
CAS 

Google Scholar 
Wu, L. et al. Cyclodextrin-modified CeO2 nanoparticles as a multifunctional nanozyme for combinational therapy of psoriasis. Int. J. Nanomedicine 15, 2515–2527. https://doi.org/10.2147/ijn.s246783 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060. https://doi.org/10.1039/C3CS35486E (2013).Article 
CAS 
PubMed 

Google Scholar 
Celardo, I., Pedersen, J. Z., Traversa, E. & Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411. https://doi.org/10.1039/C0NR00875C (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Deshpande, S., Patil, S., Kuchibhatla, S. V. & Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87, 133113. https://doi.org/10.1063/1.2061873 (2005).Article 
ADS 
CAS 

Google Scholar 
Khan, S. A. et al. Cellulose acetate-Ce/Zr@Cu0 catalyst for the degradation of organic pollutant. Int. J. Biol. Macromol. 153, 806–816. https://doi.org/10.1016/j.ijbiomac.2020.03.013 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zito, C. A., Perfecto, T. M., Dippel, A.-C., Volanti, D. P. & Koziej, D. Low-temperature carbon dioxide gas sensor based on yolk–shell Ceria nanospheres. ACS Appl. Mater. Interfaces 12, 17745–17751. https://doi.org/10.1021/acsami.0c01641 (2020).Article 
CAS 
PubMed 

Google Scholar 
Xu, C. & Qu, X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6, e90–e90. https://doi.org/10.1038/am.2013.88 (2014).Article 
CAS 

Google Scholar 
Amaldoss, M. J. N. et al. Anticancer therapeutic effect of cerium-based nanoparticles: Known and unknown molecular mechanisms. Biomater. Sci. 10, 3671–3694. https://doi.org/10.1039/D2BM00334A (2022).Article 
CAS 
PubMed 

Google Scholar 
Yu, Z., Hu, Y., Sun, Y. & Sun, T. Chemodynamic therapy combined with multifunctional nanomaterials and their applications in tumor treatment. Chemistry 27, 13953–13960. https://doi.org/10.1002/chem.202101514 (2021).Article 
CAS 
PubMed 

Google Scholar 
Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: How are they linked?. Free Radic. Biol. Med. 49, 1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pizzino, G. et al. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 1–13. https://doi.org/10.1155/2017/8416763 (2017).Article 
CAS 

Google Scholar 
Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462. https://doi.org/10.1016/j.cub.2014.03.034 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Uttara, B., Singh, A., Zamboni, P. & Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65–74. https://doi.org/10.2174/157015909787602823 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Y. R. & Trush, M. Defining ROS in biology and medicine. React. Oxyg. Species (Apex) https://doi.org/10.20455/ros.2016.803 (2016).Article 
PubMed 

Google Scholar 
Wang, Y., Branicky, R., Noë, A. & Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915–1928. https://doi.org/10.1083/jcb.201708007 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mehmood, R., Ariotti, N., Yang, J. L., Koshy, P. & Sorrell, C. C. PH-responsive morphology-controlled redox behavior and cellular uptake of nanoceria in fibrosarcoma. ACS Biomater. Sci. Eng. 4, 1064–1072. https://doi.org/10.1021/acsbiomaterials.7b00806 (2018).Article 
CAS 
PubMed 

Google Scholar 
Truong, N. P., Whittaker, M. R., Mak, C. W. & Davis, T. P. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv. 12, 129–142. https://doi.org/10.1517/17425247.2014.950564 (2015).Article 
CAS 
PubMed 

Google Scholar 
Mfengwana, P.-M.-A.H. & Sone, B. T. Green synthesis and characterization of ruthenium oxide nanoparticles using Gunnera perpensa for potential anticancer activity against MCF7 cancer cells. Sci. Rep. https://doi.org/10.1083/jcb.201708007 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Baranwal, J. et al. Nanoparticles in cancer diagnosis and treatment. Materials (Basel) 16, 5354. https://doi.org/10.3390/ma16155354 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rajendran, R. & Mani, A. Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. J. Saudi Chem. Soc. 24, 1010–1024. https://doi.org/10.1016/j.jscs.2020.10.008 (2020).Article 
CAS 

Google Scholar 
Doshi, M. et al. Exposure to nanoceria impacts larval survival, life history traits and fecundity of Aedes aegypti. PLoS Negl. Trop. Dis. 14, e0008654. https://doi.org/10.1371/journal.pntd.0008654 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Datta, A. et al. Pro-oxidant therapeutic activities of cerium oxide nanoparticles in colorectal carcinoma cells. ACS Omega 5, 9714–9723. https://doi.org/10.1021/acsomega.9b04006 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grulke, E. et al. Nanoceria: Factors affecting its pro- and anti-oxidant properties. Environ. Sci. Nano 1, 429–444. https://doi.org/10.1039/C4EN00105B (2014).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles