Exerting pulling forces in fluids by directional disassembly of microcrystalline fibres

Zwaag, Dvan & Meijer, E. W. Fueling connections between chemistry and biology. Science 349, 1056–1057 (2015).Article 
PubMed 

Google Scholar 
Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003).Article 
CAS 
PubMed 

Google Scholar 
Hürtgen, D., Vogel, S. K. & Schwille, P. Cytoskeletal and actin‐based polymerization motors and their role in minimal cell design. Adv. Biosyst. 3, e1800311 (2019).Article 
PubMed 

Google Scholar 
Lubbe, A. S., Wezenberg, S. J. & Feringa, B. L. Artificial microtubules burst with energy. Proc. Natl Acad. Sci. USA 114, 11804–11805 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fredy, J. W. et al. Molecular photoswitches mediating the strain-driven disassembly of supramolecular tubules. Proc. Natl Acad. Sci. USA 114, 11850–11855 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krieg, E., Bastings, M. M., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).Article 
CAS 
PubMed 

Google Scholar 
Cleary, J. M. & Hancock, W. O. Molecular mechanisms underlying microtubule growth dynamics. Curr. Biol. 31, R560–R573 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Akhmanova, A., Stehbens, S. J. & Yap, A. S. Touch, grasp, deliver and control: functional cross‐talk between microtubules and cell adhesions. Traffic 10, 268–274 (2009).Article 
CAS 
PubMed 

Google Scholar 
van der Zwaag, D., de Greef, T. F. & Meijer, E. W. Programmable supramolecular polymerizations. Angew. Chem. Int. Ed. 54, 8334–8336 (2015).Article 

Google Scholar 
Levin, A. et al. Elastic instability-mediated actuation by a supra-molecular polymer. Nat. Phys. 12, 926–930 (2016).Article 

Google Scholar 
Fu, M. et al. Disassembly of dipeptide single crystals can transform the lipid membrane into a network. ACS Nano 11, 7349–7354 (2017).Article 
CAS 
PubMed 

Google Scholar 
Cera, L. et al. PolyWhips: directional particle transport by gradient‐directed growth and stiffening of supramolecular assemblies. Adv. Mater. 29, 1604430 (2016).Theriot, J. A. The polymerization motor. Traffic 1, 19–28 (2000).Article 
CAS 
PubMed 

Google Scholar 
Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The DAM1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Powers, A. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Footer, M. J., Kerssemakers, J. W., Theriot, J. A. & Dogterom, M. Direct measurement of force generation by actin filament polymerization using an optical trap. Proc. Natl Acad. Sci. USA 104, 2181–2186 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Asbury, C. L., Tien, J. F. & Davis, T. N. Kinetochores’ gripping feat: conformational wave or biased diffusion? Trends Cell Biol. 21, 38–46 (2011).Article 
CAS 
PubMed 

Google Scholar 
Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).Article 
CAS 
PubMed 

Google Scholar 
Ryu, J.-H., Oh, N.-K. & Lee, M. Tubular assembly of amphiphilic rigid macrocycle with flexible dendrons. Chem. Commun. 1770–1772 (2005).Kim, H. et al. Self‐dissociating tubules from helical stacking of noncovalent macrocycles. Angew. Chem. Int. Ed. 49, 8471–8475 (2010).Article 
CAS 

Google Scholar 
Frisch, H. & Besenius, P. pH‐switchable self‐assembled materials. Macromol. Rapid Commun. 36, 346–363 (2014).Article 
PubMed 

Google Scholar 
Wang, G. & Liu, S. Strategies to construct a chemical‐fuel‐driven self‐assembly. ChemSystemsChem 2, e1900046 (2020).Boekhoven, J., Hendriksen, W. E., Koper, G. J., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).Article 
CAS 
PubMed 

Google Scholar 
van Ravensteijn, B. G., Hendriksen, W. E., Eelkema, R., van Esch, J. H. & Kegel, W. K. Fuel-mediated transient clustering of colloidal building blocks. J. Am. Chem. Soc. 139, 9763–9766 (2017).Article 
PubMed 

Google Scholar 
Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grötsch, R. K. et al. Pathway dependence in the fuel-driven dissipative self-assembly of nanoparticles. J. Am. Chem. Soc. 141, 9872–9878 (2019).Article 
PubMed 

Google Scholar 
Grötsch, R. K. et al. Dissipative self‐assembly of photoluminescent silicon nanocrystals. Angew. Chem. Int. Ed. 57, 14608–14612 (2018).Article 

Google Scholar 
Heuser, T., Steppert, A.-K., Molano Lopez, C., Zhu, B. & Walther, A. Generic concept to program the time domain of self-assemblies with a self-regulation mechanism. Nano Lett. 15, 2213–2219 (2014).Article 
PubMed 

Google Scholar 
Carlson, E. J., Riel, A. M. & Dahl, B. J. Donor–acceptor biaryl lactones: pH induced molecular switches with intramolecular charge transfer modulation. Tetrahedron Lett. 53, 6245–6249 (2012).Article 
CAS 

Google Scholar 
Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y., Huang, Z., Kim, Y., He, Y. & Lee, M. Guest-driven inflation of self-assembled nanofibers through hollow channel formation. J. Am. Chem. Soc. 136, 16152–16155 (2014).Article 
CAS 
PubMed 

Google Scholar 
Vogel, E. & Kiefer, W. Investigation of the metal adsorbate interface of the system silver coumarin and silver hydrocoumarin by means of surface enhanced Raman spectroscopy. Fresenius J. Anal. Chem. 361, 628–630 (1998).Article 
CAS 

Google Scholar 
Moriyama, T. et al. Polarization Raman imaging of organic monolayer islands for crystal orientation analysis. ACS Omega 6, 9520–9527 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ji, X. et al. Reactivity triggered by an organic microcrystal interface: a case study involving an environmentally benign, aromatic boric acid reaction. Chem. Commun. 56, 11114–11117 (2020).Article 
CAS 

Google Scholar 
Kumar, D., Thipparaboina, R., Sreedhar, B. & Shastri, N. R. The role of surface chemistry in crystal morphology and its associated properties. CrystEngComm 17, 6646–6650 (2015).Article 
CAS 

Google Scholar 
Miller, D. D. & Chuang, S. S. C. Control of CO2 adsorption and desorption using polyethylene glycol in a tetraethylenepentamine thin film: an in situ ATR and theoretical study. J. Phys. Chem. C 120, 25489–25504 (2016).Article 
CAS 

Google Scholar 
Perl, A. et al. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nat. Chem. 3, 317–322 (2011).Article 
CAS 
PubMed 

Google Scholar 
Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013).Article 
CAS 

Google Scholar 
Bormuth, V., Varga, V., Howard, J. & Schäffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).Article 
CAS 
PubMed 

Google Scholar 
Wen, H., Morris, K. R. & Park, K. Hydrogen bonding interactions between adsorbed polymer molecules and crystal surface of acetaminophen. J. Colloid Interface Sci. 290, 325–335 (2005).Article 
CAS 
PubMed 

Google Scholar 
Poornachary, S. K. et al. Anisotropic crystal growth inhibition by polymeric additives: impact on modulation of naproxen crystal shape and size. Cryst. Growth Des. 17, 4844–4854 (2017).Article 
CAS 

Google Scholar 
Li, Z., Fan, Q. & Yin, Y. Colloidal self-assembly approaches to smart nanostructured materials. Chem. Rev. 122, 4976–5067 (2021).Article 
PubMed 

Google Scholar 
Sather, N. A. et al. 3D printing of supramolecular polymer hydrogels with hierarchical structure. Small 17, e2005743 (2021).Article 
PubMed 

Google Scholar 
Xi, Y. & Pozzo, L. D. Electric field directed formation of aligned conjugated polymer fibers. Soft Matter 13, 3894–3908 (2017).Article 
CAS 
PubMed 

Google Scholar 
Altomare, A. et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 46, 1231–1235 (2013).Article 
CAS 

Google Scholar 
Vanlier, J. et al. lumicks/pylake: v1.4.0. Zenodo https://doi.org/10.5281/zenodo.10723300 (2024).Florin, E.-L., Pralle, A., Stelzer, E. H. K. & Hörber, J. K. H. Photonic force microscope calibration by thermal noise analysis. Appl. Phys. A 66, S75–S78 (1998).Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2011).Article 

Google Scholar 
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).Article 
CAS 

Google Scholar 
Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).Article 
CAS 

Google Scholar 
Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).Article 
CAS 

Google Scholar 
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).Article 
CAS 

Google Scholar 
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).Article 
CAS 
PubMed 

Google Scholar 
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).Article 
CAS 
PubMed 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).Article 
PubMed 

Google Scholar 
Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 356, 98–109 (2009).Article 
CAS 

Google Scholar 
Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057 (2006).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles