Lower diastolic tension may be indicative of higher proarrhythmic propensity in failing human cardiomyocytes

Vazquez, R. et al. The MUSIC Risk score: A simple method for predicting mortality in ambulatory patients with chronic heart failure. Eur. Heart J. 30, 1088–1096 (2009).Article 
PubMed 

Google Scholar 
Solomon, S. D. et al. Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N. Engl. J. Med. 352, 2581–2588 (2005).Article 
PubMed 

Google Scholar 
Vaduganathan, M. et al. Sudden death in heart failure with preserved ejection fraction: A competing risks analysis from the TOPCAT trial. JACC Heart Fail. 6, 653–661 (2018).Article 
PubMed 

Google Scholar 
Santens, B. et al. Adverse functional remodelling of the subpulmonary left ventricle in patients with a systemic right ventricle is associated with clinical outcome. Eur. Heart J. Cardiovasc. Imaging. 23, 680–688 (2022).Article 
PubMed 

Google Scholar 
Kikano, S. D. et al. Association of cardiovascular magnetic resonance diastolic indices with arrhythmia in repaired Tetralogy of Fallot. J. Cardiovasc. Magn. Reson. 25, 17 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Darma, A. et al. Predictors of long-term mortality after catheter ablation of ventricular tachycardia in a contemporary cohort of patients with structural heart disease. Europace 22, 1672–1679 (2020).Article 
PubMed 

Google Scholar 
Bers, D. M. Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda) 21, 380–387 (2006).PubMed 

Google Scholar 
Elshrif, M. M., Pengcheng, S. & Cherry, E. M. Electrophysiological properties under heart failure conditions in a human ventricular cell: A modeling study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 4324–4329 (2014).
Google Scholar 
Gomez, J. F., Cardona, K., Romero, L. J. M. F. Jr. & Trenor, B. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis 1D simulation study. PLoS One 9, e106602 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Priebe, L. & Beuckelmann, D. J. Simulation study of cellular electric properties in heart failure. Circ. Res. 82, 1206–1223 (1998).Article 
PubMed 

Google Scholar 
Tomek, J. et al. Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. eLife 8, e48890 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Land, S. et al. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. J. Mol. Cell. Cardiol. 106, 68–83 (2017).Article 
PubMed 

Google Scholar 
Margara, F. et al. In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment. Progr. Biophys. Mol. Biol. 159, 58–74 (2021).Article 

Google Scholar 
Jiang, M. T. et al. Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circ. Res. 91, 1015–1022 (2002).Article 
PubMed 

Google Scholar 
Valdivia, C. R. et al. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J. Mol. Cell. Cardiol. 38, 475–483 (2005).Article 
PubMed 

Google Scholar 
Hegyi, B. et al. Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proc. Natl. Acad. Sci. U.S.A. 115, E3036–E3044 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Schwinger, R. H. et al. Reduced sodium pump alpha1, alpha3, and beta1-isoform protein levels and Na+, K+-ATPase activity but unchanged Na+-Ca2+ exchanger protein levels in human heart failure. Circulation 99, 2105–2112 (1999).Article 
PubMed 

Google Scholar 
Li, G.-R., Lau, C.-P., Leung, T.-K. & Nattel, S. Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm 1, 460–468 (2004).Article 
PubMed 

Google Scholar 
Maltsev, V. A., Silverman, N., Sabbah, H. N. & Undrovinas, A. I. Chronic heart failure slows late sodium current in human and canine ventricular myocytes: Implications for repolarization variability. Eur. J. Heart Fail. 9, 219 (2007).Article 
PubMed 

Google Scholar 
Chang, P. et al. Heterogeneous upregulation of apamin‐sensitive potassium currents in failing human ventricles. J. Am. Heart Assoc. 2, (2013).Høydal, M. A. et al. Human cardiomyocyte calcium handling and transverse tubules in mid-stage of post-myocardial-infarction heart failure. ESC Heart Fail. 5, 332–342 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Røe, Å. T. et al. Regional diastolic dysfunction in post-infarction heart failure: Role of local mechanical load and SERCA expression. Cardiovasc. Res. 115, 752–764 (2019).Article 
PubMed 

Google Scholar 
Beuckelmann, D. J., Näbauer, M. & Erdmann, E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73, 379–385 (1993).Article 
PubMed 

Google Scholar 
Ambrosi, C. M., Yamada, K. A., Nerbonne, J. M. & Efimov, I. R. Gender differences in electrophysiological gene expression in failing and non-failing human hearts. PLoS One 8, e54635 (2013).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Hund, T. J. et al. Role of activated CaMKII in abnormal calcium homeostasis and I(Na) remodeling after myocardial infarction: Insights from mathematical modeling. J. Mol. Cell. Cardiol. 45, 420–428 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Maier, L. S. et al. Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: Reduced SR Ca2+ load and activated SR Ca2+ release. Circ. Res. 92, 904–911 (2003).Article 
PubMed 

Google Scholar 
Shannon, T. R., Pogwizd, S. M. & Bers, D. M. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ. Res. 93, 592–594 (2003).Article 
PubMed 

Google Scholar 
Piacentino, V. et al. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ. Res. 92, 651–658 (2003).Article 
PubMed 

Google Scholar 
McGarvey, J. R. et al. Temporal changes in infarct material properties: An in vivo assessment using magnetic resonance imaging and finite element simulations. Ann. Thorac. Surg. 100, 582–589 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Pieske, B. et al. Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J. Clin. Investig. 98, 764–776 (1996).Article 
PubMed 
PubMed Central 

Google Scholar 
Chung, J.-H. et al. Impact of heart rate on cross-bridge cycling kinetics in failing and nonfailing human myocardium. Am. J. Physiol. Heart Circ. Physiol. 317, H640–H647 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Mulieri, L. A., Hasenfuss, G., Leavitt, B., Allen, P. D. & Alpert, N. R. Altered myocardial force-frequency relation in human heart failure. Circulation 85, 1743–1750 (1992).Article 
PubMed 

Google Scholar 
Pezawas, T., Burger, A. L., Binder, T. & Diedrich, A. Importance of diastolic function for the prediction of arrhythmic death. Circ. Arrhythm. Electrophysiol. 13, e007757 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Quinn, T. A., Jin, H., Lee, P. & Kohl, P. Mechanically induced ectopy via stretch-activated cation-nonselective channels is caused by local tissue deformation and results in ventricular fibrillation if triggered on the repolarization wave edge (Commotio Cordis). Circ. Arrhythm. Electrophysiol. 10, e004777 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Gaborit, N. et al. Gender-related differences in ion-channel and transporter subunit expression in non-diseased human hearts. J. Mol. Cell. Cardiol. 49, 639–646 (2010).Article 
PubMed 

Google Scholar 
Rhoden, A. et al. Comprehensive analyses of the inotropic compound omecamtiv mecarbil in rat and human cardiac preparations. Am. J. Physiol. Heart Circ. Physiol. 322, H373–H385 (2022).Article 
PubMed 

Google Scholar 
Sani, C. M. et al. Association between low-grade chronic inflammation and depressed left atrial compliance in heart failure with preserved ejection fraction: A retrospective analysis. Folia Med. Cracov. 58, 45–55 (2018).PubMed 

Google Scholar 
Paulus, W. J. & Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).Article 
PubMed 

Google Scholar 
Van Linthout, S. & Tschöpe, C. Inflammation—Cause or consequence of heart failure or both?. Curr. Heart Fail. Rep. 14, 251–265 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M. & Pogwizd, S. M. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res. 97, 1314–1322 (2005).Article 
PubMed 

Google Scholar 
Beuckelmann, D. J., Näbauer, M. & Erdmann, E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85, 1046–1055 (1992).Article 
PubMed 

Google Scholar 
Tomaselli, G. F. & Zipes, D. P. What causes sudden death in heart failure?. Circ. Res. 95, 754–763 (2004).Article 
PubMed 

Google Scholar 
Tomaselli, G. F. & Marbán, E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc. Res. 42, 270–283 (1999).Article 
PubMed 

Google Scholar 
Zhou, X. et al. In vivo and in silico investigation into mechanisms of frequency dependence of repolarization alternans in human ventricular cardiomyocytes. Circ. Res. 118, 266–278 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
January, C. T., Riddle, J. M. & Salata, J. J. A model for early afterdepolarizations: Induction with the Ca2+ channel agonist Bay K 8644. Circ. Res. 62, 563–571 (1988).Article 
PubMed 

Google Scholar 
Weber, C. R., Piacentino, V., Houser, S. R. & Bers, D. M. Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation 108, 2224–2229 (2003).Article 
PubMed 

Google Scholar 
Hobai, I. A. & Brian, O. Enhanced Ca2+-activated Na+-Ca2+ exchange activity in canine pacing-induced heart failure. Circ. Res. 87, 690–698 (2000).Article 
PubMed 

Google Scholar 
Hasenfuss, G. et al. Relationship between Na+-Ca2+–exchanger protein levels and diastolic function of failing human myocardium. Circulation 99, 641–648 (1999).Article 
PubMed 

Google Scholar 
Jaski, B. E. et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J. Card. Fail. 15, 171–181 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Greenberg, B. et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): A randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387, 1178–1186 (2016).Article 
PubMed 

Google Scholar 
Kho, C. et al. Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure. Nat. Commun. 6, 7229 (2015).Article 
ADS 
PubMed 

Google Scholar 
Gorski, P. A. et al. Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca2+-ATPase in heart failure. Circ. Res. 124, e63–e80 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Quan, C. et al. SPEG controls calcium reuptake into the sarcoplasmic reticulum through regulating SERCA2a by its second kinase-domain. Circ. Res. 124, 712–726 (2019).Article 
PubMed 

Google Scholar 
Kaneko, M., Hashikami, K., Yamamoto, S., Matsumoto, H. & Nishimoto, T. Phospholamban ablation using CRISPR/Cas9 system improves mortality in a murine heart failure model. PLoS One 11, e0168486 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Eisner, D. A., Caldwell, J. L., Trafford, A. W. & Hutchings, D. C. The control of diastolic calcium in the heart: Basic mechanisms and functional implications. Circ. Res. 126, 395–412 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles