Unveiling errors in soil microbial community sequencing: a case for reference soils and improved diagnostics for nanopore sequencing

Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).Article 
PubMed 

Google Scholar 
Manter, D. K., Moore, J. M., Lehman, R. & Hamm, A. K. Microbial community composition, diversity, and function. In Soil Health Series: Volume 2 Laboratory Methods for Soil Health Analysis 289–323 (Soil Science Society of America, Madison, 2021).Fierer, N., Wood, S. A. & de Mesquita, C. P. B. How microbes can, and cannot, be used to assess soil health. Soil Biol. Biochem. 153, 108111 (2021).Article 

Google Scholar 
Chatterjee, S., Mondal, K. C. & Chatterjee, S. (eds) Soil Health and Environmental Sustainability: Application of Geospatial Technology (Springer, 2022).Alteio, L. V. et al. A critical perspective on interpreting amplicon sequencing data in soil ecological research. Soil Biol. Biochem. 160, 108357 (2021).Article 

Google Scholar 
Walters, K. E. & Martiny, J. B. Alpha-, beta-, and gamma-diversity of bacteria varies across habitats. PLoS One 15, e0233872 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the microbiome quality control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Bruner, E. A., Okubara, P. A., Abi-Ghanem, R., Brown, D. J. & Reardon, C. L. Use of pressure cycling technology for cell lysis and recovery of bacterial and fungal communities from soil. Biotechniques 58, 171–180 (2015).Article 
PubMed 

Google Scholar 
Kennedy, N. A. et al. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS One 9, e88982 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Mori, H. et al. Assessment of metagenomic workflows using a newly constructed human gut microbiome mock community. DNA Res. 30, dsad010 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Brooks, J. P. et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 15, 1–14 (2015).Article 

Google Scholar 
Tourlousse, D. M. et al. Characterization and demonstration of mock communities as control reagents for accurate human microbiome community measurements. Microbiol. Spectr. 10, e01915–e01921 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Han, D. et al. Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing. J. Adv. Res. 26, 111–121 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Szóstak, N. et al. The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling. Sci. Rep. 12, 8470 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1 (2013).Article 
PubMed 

Google Scholar 
Fouhy, F., Clooney, A. G., Stanton, C., Claesson, M. J. & Cotter, P. D. 16S rRNA gene sequencing of mock microbial populations-impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol. 16, 1–13 (2016).Article 

Google Scholar 
Ahn, J.-H., Kim, B.-Y., Song, J. & Weon, H.-Y. Effects of PCR cycle number and DNA polymerase type on the 16S rRNA gene pyrosequencing analysis of bacterial communities. J. Microbiol. 50, 1071–1074 (2012).Article 
PubMed 

Google Scholar 
Lee, C. K. et al. Groundtruthing next-gen sequencing for microbial ecology-biases and errors in community structure estimates from PCR amplicon pyrosequencing. PLoS One 7, e44224 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Keenum, I. et al. Amplicon sequencing minimal information (ASqMI): quality and reporting guidelines for actionable calls in biodefense applications. J. AOAC Int. 106, 1424–1430 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).Article 
PubMed 

Google Scholar 
Bakker, M. G. A fungal mock community control for amplicon sequencing experiments. Mol. Ecol. Res. 18, 541–556 (2018).Article 

Google Scholar 
Singer, E. et al. Next generation sequencing data of a defined microbial mock community. Sci. Data 3, 1–8 (2016).Article 

Google Scholar 
Meslier, V. et al. Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Sci. Data 9, 694 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Sevim, V. et al. Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies. Sci. Data 6, 285 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Hardwick, S. A. et al. Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nat. Commun. 9, 3096 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Olivares, I. R. B., Souza, G., Nogueira, A., Toledo, G. & Marcki, D. C. Trends in developments of certified reference materials for chemical analysis-focus on food, water, soil, and sediment matrices. TrAC Trends Anal. Chem. 100, 53–64 (2018).Article 

Google Scholar 
Santos, A., van Aerle, R., Barrientos, L. & Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using nanopore sequencing data. Comput. Struct. Biotechnol. J. 18, 296–305 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, T. et al. The newest Oxford nanopore R10. 4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling. Appl. Environ. Microbiol. 89, e00605–e00623 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Stevens, B. M., Creed, T. B., Reardon, C. L. & Manter, D. K. Comparison of Oxford nanopore technologies and Illumina MiSeq sequencing with mock communities and agricultural soil. Sci. Rep. 13, 9323 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Kennedy, K., Hall, M. W., Lynch, M. D., Moreno-Hagelsieb, G. & Neufeld, J. D. Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80, 5717–5722 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Ip, C. L. C. et al. MinION analysis and reference consortium: phase 1 data release and analysis. F1000Research 4, 1075 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Delahaye, C. & Nicolas, J. Sequencing DNA with nanopores: troubles and biases. PloS one 16, e0257521 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Mackey, E. et al. Certification of three NIST renewal soil standard reference materials for element content: SRM 2709a San Joaquin Soil, SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II. NIST Spec. Publ. 260, 1–39 (2010).
Google Scholar 
Bunge, J. & Fitzpatrick, M. Estimating the number of species: a review. J. Am. Stat. Assoc. 88, 364–373 (1993).Article 

Google Scholar 
Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).Article 

Google Scholar 
Chao, A. & Jost, L. Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).Article 
PubMed 

Google Scholar 
Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 492464 (2019).Article 

Google Scholar 
Cao, Y., Williams, W. P. & Bark, A. W. Effects of sample size (replicate number) on similarity measures in river benthic Aufwuchs community analysis. Water Environ. Res. 69, 107–114 (1997).Article 

Google Scholar 
Williams, J. D., Reardon, C. L., Wuest, S. B. & Long, D. S. Soil water infiltration after oilseed crop introduction into a Pacific Northwest winter wheat–fallow rotation. J. Soil Water Conserv. 75, 739–745 (2020).Article 

Google Scholar 
Halvorson, A. D., Del Grosso, S. J. & Stewart, C. E. Manure and inorganic nitrogen affect trace gas emissions under semi‐arid irrigated corn. J. Environ. Qual. 45, 906–914 (2016).Article 
PubMed 

Google Scholar 
Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) (John Wiley & Sons Ltd., 1991).Muyzer, G., Teske, A., Wirsen, C. O. & Jannasch, H. W. Phylogenetic relationships ofThiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164, 165–172 (1995).Article 
PubMed 

Google Scholar 
Wick, R. R. & Menzel, P. Filtlong. Available online: github.com/rrwick/Filtlong (accessed on 4 Mar 2022) (2018).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

Google Scholar 
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).Article 
PubMed 

Google Scholar 
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. & Schmidt, T. M. rrn DB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).Article 
PubMed 

Google Scholar 
Schoch, C. L. et al. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database 2020, baaa062 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Curry, K. D. et al. Emu: species-level microbial community profiling of full-length 16S rRNA Oxford nanopore sequencing data. Nat. Methods 19, 845–853 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2023).McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize: estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020).Article 

Google Scholar 
Schloss, P. D. Reintroducing mothur: 10 years later. Appl. Environ. Microbiol. 86, e02343–02319 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Gkanogiannis, A. fastreeR: Phylogenetic, Distance And Other Calculations on VCF and Fasta Files https://github.com/gkanogiannis/fastreeR, https://github.com/gkanogiannis/BioInfoJava-Utils (2023).Oksanen, J. et al. Vegan: Community Ecology Package, R Package Version 2.6–4 https://CRAN.R-project.org/package=vegan, https://CRAN.R-project.org/package=vegan (2022).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 

Google Scholar 
Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 1–18 (2017).Article 

Google Scholar 
Manter, D. et al. Cross-laboratory comparison of bacterial 16s rRNA communities in soil using nanopore sequencing [Dataset]. Zenodo https://zenodo.org/doi/10.5281/zenodo.11557861 (2024).

Hot Topics

Related Articles