Nickel-catalyzed regiodivergent hydrosilylation of α-(fluoroalkyl)styrenes without defluorination

Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).Article 
ADS 
PubMed 

Google Scholar 
Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).Article 
PubMed 

Google Scholar 
Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis Reactivity, Applications. 2nd edn (Wiley-VCH, 2013).Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001−2011). Chem. Rev. 114, 2432–2506 (2014).Article 
PubMed 

Google Scholar 
Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of biosisosteres for drug design. J. Med. Chem. 61, 5822–5880 (2018).Article 
PubMed 

Google Scholar 
Mei, H. B. et al. Fluorine-containing drugs approved by the FDA in 2019. Chin. Chem. Lett. 31, 2401–2413 (2020).Article 

Google Scholar 
Chu, L. L. & Qing, F. L. Copper-mediated arobic oxidative trifluoromethylation of terminal alkynes with Me3SiCF3. J. Am. Chem. Soc. 132, 7262–7263 (2010).Article 
PubMed 

Google Scholar 
Liang, T., Neumann, C. N. & Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 52, 8214–8264 (2013).Article 

Google Scholar 
Alonso, C., Marigorta, E. M., Rubiales, G. & Palacios, F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chem. Rev. 115, 1847–1935 (2015).Article 
PubMed 

Google Scholar 
Liu, X., Xu, C., Wang, M. & Liu, Q. Trifluoromethyltrimethylsilane: nucleophilic trifluoromethylation and beyond. Chem. Rev. 115, 683–730 (2015).Article 
PubMed 

Google Scholar 
Feng, Z., Xiao, Y. L. & Zhang, X. Transition-metal (Cu, Pd, Ni)-catalyzed difluoroalkylation via cross-coupling with difluoroalkylhalides. Acc. Chem. Res. 51, 2264–2278 (2018).Article 
PubMed 

Google Scholar 
Ni, C. F., Hu, M. Y. & Hu, J. B. Good partnership between sulfur and fluorine: sulfur-based fluorination and fluoroalkylation reagents for organic synthesis. Chem. Rev. 115, 765–825 (2015).Article 
PubMed 

Google Scholar 
Yang, X., Wu, T., Phipps, R. J. & Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 115, 826–870 (2015).Article 
PubMed 

Google Scholar 
Qing, F. L. et al. A fruitful decade of organofluorine chemistry: new reagents and reactions. CCS Chem. 4, 2518–2549 (2022).Article 

Google Scholar 
Zhang, C. P. et al. Copper-mediated trifluoromethylation of heteroaromatic compounds by trifluoromethyl sulfonium salts. Angew. Chem. Int. Ed. 50, 1896–1900 (2011).Article 

Google Scholar 
Bai, D. C., Wang, X. L., Zheng, G. F. & Li, X. W. Redox-divergent synthesis of fluoroalkylated pyridines and 2-pyridones through Cu-catalyzed N-O cleavage of oxime acetates. Angew. Chem. Int. Ed. 57, 6633–6637 (2018).Article 

Google Scholar 
Wang, X. et al. Controllable single and double difluoromethylene insertions into C-Cu bonds: copper-mediated tetrafluoroethylation and hexafluoropropylation of aryl iodides with TMSCF2H and TMSCF2Br. J. Am. Chem. Soc. 144, 12202–12211 (2022).Article 
PubMed 

Google Scholar 
Hu, M., Ni, C. & Hu, J. Copper-mediated trifluoromethylation of α-diazo esters with TMSCF3: the important role of water as a promoter. J. Am. Chem. Soc. 134, 15257–15260 (2012).Article 
PubMed 

Google Scholar 
Liang, Y. & Fu, G. C. Stereoconvergent Negishi arylations of racemic secondary alkyl electrophiles: differentiating between a CF3 and an alkyl group. J. Am. Chem. Soc. 137, 9523–9526 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, W., Hu, M., Wan, X. & Shen, Q. Facilitating the transmetalation step with aryl-zincates in nickel-catalyzed enantioselective arylation of secondary benzylic halides. J. Am. Chem. Soc. 141, 11446–11451 (2019).
Google Scholar 
Lin, T. Y. et al. Design and synthesis of TY-phos and application in palladium-catalyzed enantioselective fluoroarylation of gem-difluoroalkenes. Angew. Chem. Int. Ed. 59, 22957–22962 (2020).Article 

Google Scholar 
Huang, S. et al. Regio- and enantioselective umpolung gemdifluoroallylation of hydrazones via palladium catalysis enabled by N-heterocyclic carbene ligand. Nat. Commun. 12, 6551 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Bai, D. C. et al. Highly regio- and enantioselective hydrosilylation of gem-difluoroalkenes by nickel catalysis. Angew. Chem. Int. Ed. 61, e202114918 (2022).Article 

Google Scholar 
Tian, F. T., Yan, G. B. & Yu, J. Recent advances in the synthesis and applications of α-(trifluoromethyl)styrenes in organic synthesis. Chem. Commun. 55, 13486–13505 (2019).Article 

Google Scholar 
Lu, X. et al. Nickel-catalyzed allylic defluorinative alkylation of trifluoromethyl alkenes with reductive decarboxylation of redox-active esters. Chem. Sci. 10, 809–814 (2019).Article 
PubMed 

Google Scholar 
Chen, F. L., Xu, X. F., He, Y. L., Huang, G. P. & Zhu, S. L. NiH-catalyzed migratory defluorinative olefin cross-coupling: trifluoromethyl-substituted alkenes as acceptor olefins to form gem-difluoroalkenes. Angew. Chem. Int. Ed. 59, 5398–5402 (2020).Article 

Google Scholar 
Deng, Y. P., He, J. J., Cao, S. & Qian, X. H. Advances in cycloaddition and hydroaddition reaction of α-(trifluoromethyl)styrenes without defluorination: an alternative approach to CF3-containing compounds. Chin. Chem. Lett. 33, 2363–2371 (2022).Article 

Google Scholar 
Huang, W. S. et al. General catalytic enantioselective access to monohalomethyl and trifluoromethyl cyclopropanes. Chem. Eur. J. 24, 10339–10343 (2018).Article 
PubMed 

Google Scholar 
Hock, K. J., Spitzner, R. & Koenigs, R. M. Towards nitrile-substituted cyclopropanes – a slow-release protocol for safe and scalable applications of diazo acetonitrile. Green. Chem. 19, 2118–2122 (2017).Article 

Google Scholar 
Trost, B. M. & Debien, L. Palladium-catalyzed trimethylenemethane cycloaddition of olefins activated by the σ-electron-withdrawing trifluoromethyl group. J. Am. Chem. Soc. 137, 11606–11609 (2015).Article 
PubMed 

Google Scholar 
Magre, M., Biosca, M., Pámies, O. & Diéguez, M. Filling the gaps in the challenging asymmetric hydroboration of 1,1-disubstituted alkenes with simple phosphite-based phosphinooxazoline iridium catalysts. Chem. Cat. Chem. 7, 114–120 (2015).
Google Scholar 
Hu, M., Tan, B. B. & Ge, S. Z. Enantioselective cobalt-catalyzed hydroboration of fluoroalkyl-substituted alkenes to access chiral fluoroalkylboronates. J. Am. Chem. Soc. 144, 15333–15338 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhu, C. et al. Nickel-catalyzed anti-Markovnikov hydroalkylation of trifluoromethylalkenes. ACS Catal. 12, 9410–9417 (2022).Article 

Google Scholar 
Brook, M. A. Silicon in Organic, Organometallic and Polymer Chemistry (Wiley, 2000).Pooni, P. K. & Showell, G. A. Silicon switches of marketed drugs. Mini Rev. Med. Chem. 6, 1169–1177 (2006).Article 
PubMed 

Google Scholar 
Xu, L. W., Li, L., Lai, G. Q. & Jiang, J. X. The recent synthesis and application of silicon-stereogenic silanes: a renewed and significant challenge in asymmetric synthesis. Chem. Soc. Rev. 40, 1777–1790 (2011).Article 
PubMed 

Google Scholar 
Franz, A. K. & Wilson, S. O. Organosilicon molecules with medicinal applications. J. Med. Chem. 56, 388–405 (2013).Article 
PubMed 

Google Scholar 
Bart, S. C., Lobkovsky, E. & Chirik, P. J. Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation. J. Am. Chem. Soc. 126, 13794–13807 (2004).Article 
PubMed 

Google Scholar 
Chen, J. H., Cheng, B., Cao, M. Y. & Lu, Z. Iron-catalyzed asymmetric hydrosilylation of 1,1-disubstitutedAlkenes. Angew. Chem. Int. Ed. 54, 4661–4664 (2015).Article 
ADS 

Google Scholar 
Cheng, B., Liu, W. B. & Lu, Z. Iron-catalyzed highly enantioselective hydrosilylation of unactivated terminal alkenes. J. Am. Chem. Soc. 140, 5014–5017 (2018).Article 
PubMed 

Google Scholar 
Hu, M. Y. et al. Iron-catalyzed regiodivergent alkyne hydrosilylation. J. Am. Chem. Soc. 142, 16894–16902 (2020).Article 
PubMed 

Google Scholar 
Cheng, B., Lu, P., Zhang, H. Y., Cheng, X. P. & Lu, Z. Highly enantioselective cobalt-catalyzed hydrosilylation of alkenes. J. Am. Chem. Soc. 139, 9439–9442 (2017).Article 
PubMed 

Google Scholar 
Wang, C., Teo, W. J. & Ge, S. Z. Cobalt-catalyzed regiodivergent hydrosilylation of vinylarenes and aliphatic alkenes: ligand- and silane-dependent regioselectivities. ACS Catal. 7, 855–863 (2017).Article 

Google Scholar 
Wen, H. N., Wang, K., Zhang, Y. L., Liu, G. X. & Huang, Z. Cobalt-catalyzed regio- and enantioselective Markovnikov 1,2- hydrosilylation of conjugated dienes. ACS Catal. 9, 1612–1618 (2019).Article 

Google Scholar 
Lipschutz, M. I. & Tilley, T. D. Synthesis and reactivity of a conveniently prepared two-coordinate bis(amido) nickel(II) complex. Chem. Commun. 48, 7146–7148 (2012).Article 

Google Scholar 
Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M. & Hu, X. Chemoselective alkene hydrosilylation catalyzed by nickel pincer complexes. Angew. Chem. Int. Ed. 54, 14523–14526 (2015).Article 

Google Scholar 
Steiman, T. J. & Uyeda, C. Reversible substrate activation and catalysis at an intact metal− metal bond using a redox-active supporting ligand. J. Am. Chem. Soc. 137, 6104–6110 (2015).Article 
PubMed 

Google Scholar 
Buslov, I., Keller, S. C. & Hu, X. L. Alkoxy hydrosilanes as surrogates of gaseous silanes for hydrosilylation of alkenes. Org. Lett. 18, 1928–1931 (2016).Article 
PubMed 

Google Scholar 
Pappas, I., Treacy, S. & Chirik, P. J. Alkene hydrosilylation using tertiary silanes with α-diimine nickel catalysts. Redox-active ligands promote a distinct mechanistic pathway from platinum catalysts. ACS Catal. 6, 4105–4109 (2016).Article 

Google Scholar 
Mathew, J. et al. Olefin hydrosilylation catalyzed by cationic nickel(ii) allyl complexes: a non-innocent allyl ligand-assisted mechanism. Chem. Commun. 52, 6723–6726 (2016).Article 

Google Scholar 
Corey, J. Y. Reactions of hydrosilanes with transition metal complexes and characterization of the products. Chem. Rev. 111, 863–1071 (2011).Article 
PubMed 

Google Scholar 
Nakajima, Y. & Shimada, S. Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Adv. 5, 20603–20616 (2015).Article 
ADS 

Google Scholar 
Du, X. Y. & Huang, Z. Advances in base-metal-catalyzed alkene hydrosilylation. ACS Catal. 7, 1227–1243 (2017).Article 

Google Scholar 
Sunada, Y. & Nagashima, H. in Organosilicon Chemistry: Novel Approaches and Reactions (eds Hiyama, T. & Oestreich, M.) (WileyVCH, 2019).Gao, Y. F., Wang, L. J. & Deng, L. Distinct catalytic performance of cobalt(I)–N-heterocyclic carbene complexes in promoting the reaction of alkene with diphenylsilane: selective 2,1-hydrosilylation, 1,2-hydrosilylation, and hydrogenation of alkene. ACS Catal. 8, 9637–9646 (2018).Article 

Google Scholar 
Agahi, R. et al. Regiodivergent hydrosilylation, hydrogenation, [2π + 2π]-cycloaddition and C–H borylation using counterion activated earth-abundant metal catalysis. Chem. Sci. 10, 5079–5084 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Kuai, C. S. et al. Ligand-regulated regiodivergent hydrosilylation of isoprene under iron catalysis. Angew. Chem. Int. Ed. 59, 19115–19120 (2020).Article 

Google Scholar 
Hossain, I. & Schmidt, J. A. Cationic nickel(II)-catalyzed hydrosilylation of alkenes: role of P, N-type ligand scaffold on selectivity and reactivity. Organometallics 39, 3441–3451 (2020).Article 

Google Scholar 
Wu, X. Y. et al. Nickel-catalyzed hydrosilylation of terminal alkenes with primary silanes via electrophilic silicon–hydrogen bond activation. Org. Lett. 23, 1434–1439 (2021).Article 
PubMed 

Google Scholar 
Docherty, J. H., Dominey, A. P. & Thomas, S. P. Cobalt-catalysed, ligand-controlled regiodivergent alkene hydrosilylation. Asian J. Org. Chem. 10, 2379–2384 (2021).Article 

Google Scholar 
Cheng, Z.-Y. et al. Cobalt-catalyzed regiodivergent double hydrosilylation of arylacetylenes. Angew. Chem. Int. Ed. 61, e202215029 (2022).
Google Scholar 
Chen, Y. & Zargarian, D. Phenylsilane dehydrocoupling and addition to styrene catalyzed by (R-indenyl)Ni(phosphine)(methyl) complexes. Can. J. Chem. 87, 280–287 (2009).Article 

Google Scholar 
Junquera, L. B., Puerta, M. C. & Valerga, P. R-Allyl nickel(II) complexes with chelating N-heterocyclic carbenes: synthesis, structural characterization, and catalytic activity. Organometallics 31, 2175–2183 (2012).Article 

Google Scholar 
Yao, C. B., Wang, S., Norton, J. & Hammond, M. Catalyzing the hydrodefluorination of CF3-substituted alkenes by PhSiH3. H• transfer from a nickel hydride. J. Am. Chem. Soc. 142, 4793–4799 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Bott, G., Field, L. D. & Sternhell, S. Steric effects. a study of a rationally designed system. J. Am. Chem. Soc. 102, 5618–5626 (1980).Article 

Google Scholar 
Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).Article 
PubMed 

Google Scholar 
Chang, A. S. et al. (NHC)Ni(0)-catalyzed branched-selective alkene hydrosilylation with secondary and tertiary silanes. ACS Catal. 12, 11002–11014 (2022).Article 

Google Scholar 
Zhu, B. & Sakaki, S. C(sp3)−F bond activation and hydrodefluorination of the CF3 group catalyzed by a nickel(II) hydride complex: theoretical insight into the mechanism with a spin-state change and two ion-pair intermediates. ACS Catal. 11, 10681–10693 (2021).Article 

Google Scholar 
Marciniec, B. Catalysis by transition metal complexes of alkene silylation – recent progress and mechanistic implications. Coord. Chem. Rev. 249, 2374–2390 (2005).Article 

Google Scholar 

Hot Topics

Related Articles