In-silico study unveils potential phytocompounds in Andrographis paniculata against E6 protein of the high-risk HPV-16 subtype for cervical cancer therapy

Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263. https://doi.org/10.3322/caac.21834 (2024).Article 
PubMed 

Google Scholar 
Chhikara, B. & Parang, K. Global cancer statistics 2022: the trends projection analysis. Chem. Biol. Lett. 10, 451 (2022).
Google Scholar 
Bruni, L. et al. Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: a review and synthetic analysis. Lancet Glob. Health 10, e1115–e1127. https://doi.org/10.1016/s2214-109x(22)00241-8 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Arbyn, M. et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob. Health 8, e191–e203. https://doi.org/10.1016/s2214-109x(19)30482-6 (2020).Article 
PubMed 

Google Scholar 
Das, S. et al. Molecular mechanisms augmenting resistance to current therapies in clinics among cervical cancer patients. Med. Oncol. 40, 149. https://doi.org/10.1007/s12032-023-01997-9 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Uddin, A. K., Sumon, M. A., Pervin, S. & Sharmin, F. Cervical cancer in Bangladesh. South Asian J. Cancer 12, 036–038 (2023).Article 

Google Scholar 
Davy, M. L., Dodd, T. J., Luke, C. G. & Roder, D. M. Cervical cancer: effect of glandular cell type on prognosis, treatment, and survival. Obstet. Gynecol. 101, 38–45 (2003).PubMed 

Google Scholar 
Akash, S. et al. Novel computational and drug design strategies for inhibition of human papillomavirus-associated cervical cancer and DNA polymerase theta receptor by Apigenin derivatives. Sci. Rep. 13, 16565 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tan, L. F., Rajagopal, M. & Selvaraja, M. An overview on the pathogenesis of cervical cancer. Curr. Trends Biotechnol. Pharm. 17, 717–734 (2023).CAS 

Google Scholar 
Perkins, R. B., Wentzensen, N., Guido, R. S. & Schiffman, M. Cervical cancer screening: a review. Jama 330, 547–558 (2023).Article 
CAS 
PubMed 

Google Scholar 
Ma, X. & Yang, M. The correlation between high-risk HPV infection and precancerous lesions and cervical cancer. Am. J. Transl. Res. 13, 10830 (2021).CAS 
PubMed 
PubMed Central 

Google Scholar 
Plummer, M., Peto, J. & Franceschi, S. International collaboration of epidemiological studies of cervical cancer time since first sexual intercourse and the risk of cervical cancer. Int. J. Cancer 130(11), 2638–2644 (2012).Article 
CAS 
PubMed 

Google Scholar 
Pal, A. & Kundu, R. Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Front. Microbiol. 10, 510168 (2020).Article 

Google Scholar 
Peng, Q. et al. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Therapy 31, 9–17 (2024).Article 
CAS 
PubMed 

Google Scholar 
Szymonowicz, K. A. & Chen, J. Biological and clinical aspects of HPV-related cancers. Cancer Biol. Med. 17, 864 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Galani, E. & Christodoulou, C. Human papilloma viruses and cancer in the post-vaccine era. Clin. Microbiol. Infect. 15, 977–981 (2009).Article 
CAS 
PubMed 

Google Scholar 
Noratto, G. et al. Antitumor potential of dark sweet cherry sweet (Prunus avium) phenolics in suppressing xenograft tumor growth of MDA-MB-453 breast cancer cells. J. Nutr. Biochem. 84, 108437 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hampson, L., Martin-Hirsch, P. & Hampson, I. N. An overview of early investigational drugs for the treatment of human papilloma virus infection and associated dysplasia. Exp. Opinion Invest. Drugs 24, 1529–1537 (2015).Article 
CAS 

Google Scholar 
Gaobotse, G. et al. The use of African medicinal plants in cancer management. Front. Pharmacol. 14, 1122388 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sahsuvar, S., Guner, R., Gok, O. & Can, O. Development and pharmaceutical investigation of novel cervical cancer-targeting and redox-responsive melittin conjugates. Sci. Rep. 13, 18225 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mehmood, A., Kaushik, A. C., Wang, Q., Li, C.-D. & Wei, D.-Q. Bringing structural implications and deep learning-based drug identification for KRAS mutants. J. Chem. Inform. Model. 61, 571–586 (2021).Article 
CAS 

Google Scholar 
Mehmood, A., Nawab, S., Jin, Y., Kaushik, A. C. & Wei, D.-Q. Mutational impacts on the N and C terminal domains of the MUC5B protein: a transcriptomics and structural biology study. ACS Omega 8, 3726–3735 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z. et al. Combination of furosemide, gold, and dopamine as a potential therapy for breast cancer. Funct. Integrative Genom. 23, 94 (2023).Article 
CAS 

Google Scholar 
Aihara, J.-I. Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103, 7487–7495. https://doi.org/10.1021/jp990092i (1999).Article 
CAS 

Google Scholar 
Al-Makhzumi, Q., Abdullah, H. & Al-Ani, R. Theoretical study of N-Methyl-3-Phenyl-3-(4-(Trifluoromethyl) Phenoxy) Propan as a drug and its five derivatives. J. Biosci. Med. 06, 80–98. https://doi.org/10.4236/jbm.2018.68007 (2018).Article 
CAS 

Google Scholar 
Kumar, G. & Surapaneni, S. Role of drug metabolism in drug discovery and development. Med. Res. Rev. 21, 397–411. https://doi.org/10.1002/med.1016 (2001).Article 
CAS 
PubMed 

Google Scholar 
Zhao, J. et al. Revisiting aldehyde oxidase mediated metabolism in drug-like molecules: an improved computational model. J. Med. Chem. 63, 6523–6537. https://doi.org/10.1021/acs.jmedchem.9b01895 (2020).Article 
CAS 
PubMed 

Google Scholar 
Islam, M. R. et al. Ligand-based drug design against Herpes Simplex Virus-1 capsid protein by modification of limonene through in silico approaches. Sci. Rep. 14, 9828. https://doi.org/10.1038/s41598-024-59577-4 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Trinidad-Calderón, P. A., Varela-Chinchilla, C. D. & García-Lara, S. Natural peptides inducing cancer cell death: mechanisms and properties of specific candidates for cancer therapeutics. Molecules 26, 7453 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Azam, F. et al. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer’s disease: an investigation by docking, molecular dynamics, and DFT studies. J. Biomol. Struct. Dyn. 36, 2099–2117 (2018).Article 
CAS 
PubMed 

Google Scholar 
Saravanan, S. & Balachandran, V. Quantum chemical studies, natural bond orbital analysis and thermodynamic function of 2, 5-dichlorophenylisocyanate. Spectrochim. Acta Part A: Mol. Biomol. Spectr. 120, 351–364 (2014).Article 
CAS 

Google Scholar 
Das, A., Das, A. & Banik, B. K. Influence of dipole moments on the medicinal activities of diverse organic compounds. J. Indian Chem. Soc. 98, 100005. https://doi.org/10.1016/j.jics.2021.100005 (2021).Article 
CAS 

Google Scholar 
Pereira, F. & Aires-de-Sousa, J. Machine learning for the prediction of molecular dipole moments obtained by density functional theory. J. Cheminform. 10, 43. https://doi.org/10.1186/s13321-018-0296-5 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A. R. & Hatamjafari, F. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects. J. Chem. Res. 45, 147–158. https://doi.org/10.1177/1747519820932091 (2021).Article 
CAS 

Google Scholar 
Mol, G. S. et al. Structural activity, fungicidal activity and molecular dynamics simulation of certain triphenyl methyl imidazole derivatives by experimental and computational spectroscopic techniques. Spectrochim. Acta Part A: Mol. Biomol. Spectr. 212, 105–120 (2019).Article 
ADS 

Google Scholar 
Movasaghi, Z. & Rehman, S. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectr. Rev. 43, 134–179 (2008).Article 
ADS 
CAS 

Google Scholar 
Talari, A. C. S., Martinez, M. A. G., Movasaghi, Z., Rehman, S. & Rehman, I. U. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectr. Rev. 52, 456–506 (2017).Article 
ADS 
CAS 

Google Scholar 
Guo, Y., Liu, C., Ye, R. & Duan, Q. Advances on water quality detection by uv-vis spectroscopy. Appl. Sci. 10, 6874 (2020).Article 
CAS 

Google Scholar 
Rahman, M. S. et al. Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2, the etiologic agent of COVID-19 pandemic: an in silico approach. PeerJ 8, e9572 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Hoque, M. N. et al. Differential gene expression profiling reveals potential biomarkers and pharmacological compounds against SARS-CoV-2: Insights from machine learning and bioinformatics approaches. Front. Immunol. 13, 918692 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Samant, L. R., Sangar, V. C., Shahid Chaudhary, S. C. & Abhay Chowdhary, A. C. In silico molecular interactions of HIV antiviral drugs against HPV type 18 E6 protein. (2015).KOTADIYA, R. & GEORRGE, J. J. 1. IN SILICO APPROACH TO IDENTIFY PUTATIVE DRUGS FROM NATURAL PRODUCTS FOR HUMAN PAPILLOMAVIRUS (HPV) WHICH CAUSE CERVICAL CANCER By ROHITKUMAR KOTADIYA1 AND JOHN J. GEORRGE2. Life Sciences Leaflets 62, 1 to 13–11 to 13 (2015).Proboningrat, A. et al. In silico study of natural inhibitors for human papillomavirus-18 E6 protein. Res. J. Pharm. Technol. 15, 1251–1256 (2022).Article 

Google Scholar 
Zhang, X. et al. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Front. Oncol. 12, 1101289 (2022).Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Salaria, D. et al. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of human papillomavirus (HPV-18) for cervical cancer treatment: an in silico approach. PLoS ONE 17, e0265420. https://doi.org/10.1371/journal.pone.0265420 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, M. S. et al. Wogonin induces apoptosis by suppressing E6 and E7 expressions and activating intrinsic signaling pathways in HPV-16 cervical cancer cells. Cell Biol. Toxicol. 29, 259–272. https://doi.org/10.1007/s10565-013-9251-4 (2013).Article 
CAS 
PubMed 

Google Scholar 
van de Waterbeemd, H. & Gifford, E. ADMET in silico modelling: towards prediction paradise?. Nat. Rev. Drug Discov. 2, 192–204. https://doi.org/10.1038/nrd1032 (2003).Article 
PubMed 

Google Scholar 
Kar, S. & Leszczynski, J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug. Discov. 15, 1473–1487. https://doi.org/10.1080/17460441.2020.1798926 (2020).Article 
CAS 
PubMed 

Google Scholar 
Abdullah, A. et al. Molecular dynamics simulation and pharmacoinformatic integrated analysis of bioactive phytochemicals from Azadirachta indica (Neem) to treat diabetes mellitus. J. Chem. 2023, 1–19 (2023).
Google Scholar 
Andalib, K. S. et al. Identification of novel MCM2 inhibitors from Catharanthus roseus by pharmacoinformatics, molecular docking and molecular dynamics simulation-based evaluation. Inform. Med. Unlocked 39, 101251 (2023).Article 

Google Scholar 
Al Saber, M. et al. A comprehensive review of recent advancements in cancer immunotherapy and generation of CAR T cell by CRISPR-Cas9. Processes 10, 16 (2021).Article 

Google Scholar 
Khan, A. M. et al. <em>In vitro</em> and <em>in silico</em> investigation of garlic’s (<em>Allium sativum</em>) bioactivity against 15-lipoxygenase mediated inflammopathies. J. Herbmed. Pharmacol. 12, 283–298. https://doi.org/10.34172/jhp.2023.31 (2023).Article 
CAS 

Google Scholar 
Hossain, M. A. et al. Genome-wide investigation reveals potential therapeutic targets in shigella spp.. BioMed. Res. Int. 2024, 5554208 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Biovia, D. S. & Dsme, R. San Diego: Dassault Systèmes. Release 4 (2015).Mohanraj, K. et al. IMPPAT: a curated database of I ndian M edicinal P lants, P hytochemistry A nd T herapeutics. Sci. Rep. 8, 4329 (2018).Article 
ADS 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar 
Naomi, R. et al. Mechanisms of natural extracts of andrographis paniculata that target lipid-dependent cancer pathways: a view from the signaling pathway. Int. J. Mol. Sci. 23, 5972 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hossain, M. S., Urbi, Z., Sule, A. & Rahman, K. H. Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. The Scientific World Journal 2014 (2014).Adiguna, S. B. et al. Antiviral activities of andrographolide and its derivatives: mechanism of action and delivery system. Pharmaceuticals 14(11), 1102 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huey, R., Morris, G. M. & Forli, S. Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. Scripps Res. Inst. Mol. Graphics Lab. 10550, 1000 (2012).
Google Scholar 
Duncan, C. L., Gunosewoyo, H., Mocerino, M. & Payne, A. D. Small Molecule Inhibitors of Human Papillomavirus: A Review of Research from 1997 to 2021. Curr Med Chem, https://doi.org/10.2174/0929867331666230713165407 (2023).Ardalani, H., Avan, A. & Ghayour-Mobarhan, M. Podophyllotoxin: a novel potential natural anticancer agent. Avicenna J. Phytomed. 7, 285 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
Murray, M. L. et al. Human papillomavirus infection: protocol for a randomised controlled trial of imiquimod cream (5%) versus podophyllotoxin cream (0.15%), in combination with quadrivalent human papillomavirus or control vaccination in the treatment and prevention of recurrence of anogenital warts (HIPvac trial). BMC Med. Res. Methodol. 18, 1–9 (2018).Article 
ADS 

Google Scholar 
Zheng, G. et al. Gaussian 09. Gaussian Inc., Wallingford CT, 48 (2009).Khan, R. A. et al. Diterpenes/diterpenoids and their derivatives as potential bioactive leads against dengue virus: a computational and network pharmacology study. Molecules 26, 6821 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Uzzaman, M. et al. Physicochemical, spectral, molecular docking and ADMET studies of Bisphenol analogues; a computational approach. Inform. Med. Unlocked 25, 100706 (2021).Article 

Google Scholar 
Dallakyan, S. & Olson, A. J. Small-molecule library screening by docking with PyRx. Chemical biology: methods and protocols, 243–250 (2015).Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J. Chem. Inform. Model. 61, 3891–3898 (2021).Article 
CAS 

Google Scholar 
Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. https://doi.org/10.1002/jcc.21334 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xing, C., Chen, P. & Zhang, L. Computational insight into stability-enhanced systems of anthocyanin with protein/peptide. Food Chem. Mol. Sci. 6, 100168 (2023).Article 
CAS 

Google Scholar 
Volkamer, A., Kuhn, D., Rippmann, F. & Rarey, M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 28, 2074–2075. https://doi.org/10.1093/bioinformatics/bts310 (2012).Article 
CAS 
PubMed 

Google Scholar 
Pliska, V., Testa, B. & van de Waterbeemd, H. In Lipophilicity in Drug Action and Toxicology 1–6 (Wiley-VCH Verlag GmbH, 1996).Banerjee, P., Kemmler, E., Dunkel, M. & Preissner, R. ProTox 30: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res, https://doi.org/10.1093/nar/gkae303 (2024).Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1, 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007 (2004).Article 
CAS 
PubMed 

Google Scholar 
El Khoury, L. et al. Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4. J. Comput.-Aided Mol. Des. 33, 1011–1020 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Rahman, M. S. et al. In vivo neuropharmacological potential of gomphandra tetrandra (wall.) sleumer and in-silico study against β-amyloid precursor protein. Processes 9, 1449 (2021).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles