Machine-learning-assisted high-throughput identification of potent and stable neutralizing antibodies against all four dengue virus serotypes

Bhatt, S. et al. The global distribution and burden of dengue. Nature. 496, 504–507. https://doi.org/10.1038/nature12060 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Khetarpal, N. & Khanna, I. Dengue fever: Causes, complications, and vaccine strategies. J. Immunol. Res. 2016, 6803098. https://doi.org/10.1155/2016/6803098 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thomas, S. J. Is new dengue vaccine efficacy data a relief or cause for concern?. NPJ Vaccines. 8, 55. https://doi.org/10.1038/s41541-023-00658-2 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Beltramello, M. et al. The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 8, 271–283. https://doi.org/10.1016/j.chom.2010.08.007 (2010).Article 
CAS 
PubMed 

Google Scholar 
Dejnirattisai, W. et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 16, 170–177. https://doi.org/10.1038/ni.3058 (2015).Article 
CAS 
PubMed 

Google Scholar 
Pitaksajjakul, P. et al. Antibody germline characterization of cross-neutralizing human IgGs against 4 serotypes of dengue virus. Biochem. Biophys. Res. Commun. 446, 475–480. https://doi.org/10.1016/j.bbrc.2014.02.131 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, M. et al. Protective capacity of the human anamnestic antibody response during acute dengue virus infection. J. Virol. 90, 11122–11131. https://doi.org/10.1128/JVI.01096-16 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stiasny, K., Kiermayr, S., Holzmann, H. & Heinz, F. X. Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J. Virol. 80, 9557–9568. https://doi.org/10.1128/JVI.00080-06 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dussupt, V., Modjarrad, K. & Krebs, S. J. Landscape of monoclonal antibodies targeting zika and dengue: Therapeutic solutions and critical insights for vaccine development. Front. Immunol. 11, 621043. https://doi.org/10.3389/fimmu.2020.621043 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fibriansah, G. & Lok, S. M. The development of therapeutic antibodies against dengue virus. Antiviral Res. 128, 7–19. https://doi.org/10.1016/j.antiviral.2016.01.002 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dejnirattisai, W. et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 185, 467–484. https://doi.org/10.1016/j.cell.2021.12.046 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 28, 490–495. https://doi.org/10.1038/s41591-021-01678-y (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Injampa, S. et al. Generation and characterization of cross neutralizing human monoclonal antibody against 4 serotypes of dengue virus without enhancing activity. PeerJ. 5, e4021. https://doi.org/10.7717/peerj.4021 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chan, K. R., Ong, E. Z. & Ooi, E. E. Therapeutic antibodies as a treatment option for dengue fever. Expert Rev. Anti Infect. Ther. 11, 1147–1157. https://doi.org/10.1586/14787210.2013.839941 (2013).Article 
CAS 
PubMed 

Google Scholar 
Sormanni, P., Aprile, F. A. & Vendruscolo, M. Third generation antibody discovery methods: In silico rational design. Chem. Soc. Rev. 47, 9137–9157. https://doi.org/10.1039/c8cs00523k (2018).Article 
CAS 
PubMed 

Google Scholar 
Akbar, R. et al. In silico proof of principle of machine learning-based antibody design at unconstrained scale. MAbs. 14, 2031482. https://doi.org/10.1080/19420862.2022.2031482 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Ruffolo, J. A., Sulam, J. & Gray, J. J. Antibody structure prediction using interpretable deep learning. Patterns (NY). 3, 100406. https://doi.org/10.1016/j.patter.2021.100406 (2022).Article 
CAS 

Google Scholar 
Shan, S. et al. Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization. Proc. Natl. Acad. Sci. 119, e2122954119. https://doi.org/10.1073/pnas.2122954119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, G. et al. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics. 36, 2126–2133. https://doi.org/10.1093/bioinformatics/btz895 (2020).Article 
CAS 
PubMed 

Google Scholar 
Li, X., Van Deventer, J. A. & Hassoun, S. ASAP-SML: An antibody sequence analysis pipeline using statistical testing and machine learning. PLOS Comput. Biol. 16, e1007779. https://doi.org/10.1371/journal.pcbi.1007779 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rawi, R. et al. Accurate prediction for antibody resistance of clinical HIV-1 isolates. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-50635-w (2019).Article 
CAS 

Google Scholar 
Yu, W. H. et al. Predicting the broadly neutralizing antibody susceptibility of the HIV reservoir. JCI Insight. 4, e130153. https://doi.org/10.1172/jci.insight.130153 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Magar, R., Yadav, P. & Barati Farimani, A. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Sci. Rep. 11, 5261. https://doi.org/10.1038/s41598-021-84637-4 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Horst, A. et al. Machine learning detects anti-DENV signatures in antibody repertoire sequences. Front. Artif. Intell. 4, 715462. https://doi.org/10.3389/frai.2021.715462 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Natali, E. et al. The dengue-specific immune response and antibody identification with machine learning. NPJ Vaccines. 9, 16. https://doi.org/10.1038/s41541-023-00788-7 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wong, Y. H. et al. Molecular basis for dengue virus broad cross-neutralization by humanized monoclonal antibody 513. Sci. Rep. 8, 8449. https://doi.org/10.1038/s41598-018-26800-y (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rathore, A. S., Sarker, A. & Gupta, R. D. Designing antibody against highly conserved region of dengue envelope protein by in silico screening of scFv mutant library. PLoS One. 14, e0209576. https://doi.org/10.1371/journal.pone.0209576 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chaudhury, S. et al. Dengue virus antibody database: Systematically linking serotype-specificity with epitope mapping in dengue virus. PLoS Negl. Trop. Dis. 11, e0005395. https://doi.org/10.1371/journal.pntd.0005395 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Deng, Y. Q. et al. A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of e protein. PLoS One. 6, e16059. https://doi.org/10.1371/journal.pone.0016059 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
França, R.K.A. de O, Silva, J.M., Rodrigues, L.S., Sokolowskei, D., Brigido, M.M., Maranhão, A.Q. New anti-flavivirus fusion loop human antibodies with zika virus-neutralizing potential. Int. J. Mol. Sci. 23, 7805. https://doi.org/10.3390/ijms23147805 (2022).Schaduangrat, N. et al. StackPR is a new computational approach for large-scale identification of progesterone receptor antagonists using the stacking strategy. Sci. Rep. 12, 16435. https://doi.org/10.1038/s41598-022-20143-5 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, D., Ge, Y., Zhong, B. & Liu, D. Specific epitopes form extensive hydrogen-bonding networks to ensure efficient antibody binding of SARS-CoV-2: Implications for advanced antibody design. Comput. Struct. Biotechnol. J. 19, 1661–1671. https://doi.org/10.1016/j.csbj.2021.03.021 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hofstädter, K., Stuart, F., Jiang, L., Vrijbloed, J. W. & Robinson, J. A. On the importance of being aromatic at an antibody-protein antigen interface: Mutagenesis of the extracellular interferon γ receptor and recognition by the neutralizing antibody A6. J. Mol. Biol. 285, 805–815. https://doi.org/10.1006/jmbi.1998.2343 (1999).Article 
PubMed 

Google Scholar 
Srisongkram, T., Khamtang, P. & Weerapreeyakul, N. Prediction of KRASG12C inhibitors using conjoint fingerprint and machine learning-based QSAR models. J. Mol. Graph Model. 122, 108466. https://doi.org/10.1016/j.jmgm.2023.108466 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chan, A. W., Laskowski, R. A. & Selwood, D. L. Chemical fragments that hydrogen bond to Asp, Glu, Arg, and His side chains in protein binding sites. J. Med. Chem. 53, 3086–3094. https://doi.org/10.1021/jm901696w (2010).Article 
CAS 
PubMed 

Google Scholar 
Wicker, J. G. & Cooper, R. I. Beyond rotatable bond counts: Capturing 3D conformational flexibility in a single descriptor. J. Chem. Inf. Model. 56, 2347–2352. https://doi.org/10.1021/acs.jcim.6b00565 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jasper, J. B., Jasper, J. B., Humbeck, L., Brinkjost, T. & Koch, O. A novel interaction fingerprint derived from per atom score contributions: Exhaustive evaluation of interaction fingerprint performance in docking based virtual screening. J. Cheminform. 10, 15. https://doi.org/10.1186/s13321-018-0264-0 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Uetrecht, J.P., & Trager, W. Drug Metabolism: Chemical and Enzymatic Aspects (1st ed.). CRC Press. https://doi.org/10.1201/b14488 (2007).Goulet, D. R. & Atkins, W. M. Considerations for the design of antibody-based therapeutics. J. Pharm. Sci. 109, 74–103. https://doi.org/10.1016/j.xphs.2019.05.031 (2020).Article 
CAS 
PubMed 

Google Scholar 
Parameswaran, P. et al. Convergent antibody signatures in human dengue. Cell Host Microbe. 13, 691–700. https://doi.org/10.1016/j.chom.2013.05.008 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bürckert, J. P. et al. Functionally convergent B cell receptor sequences in transgenic rats expressing a human B cell repertoire in response to tetanus toxoid and measles antigens. Front. Immunol. 8, 1834. https://doi.org/10.3389/fimmu.2017.01834 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pipattanaboon, C. et al. Cross-reactivity of human monoclonal antibodies generated with peripheral blood lymphocytes from dengue patients with Japanese encephalitis virus. Biologics. 7, 175–187. https://doi.org/10.2147/BTT.S47438 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Charoenkwan, P., Nantasenamat, C., Hasan, M. M. & Shoombuatong, W. iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation. Anal. Biochem. 599, 113747. https://doi.org/10.1016/j.ab.2020.113747 (2020).Article 
CAS 
PubMed 

Google Scholar 
Duvenaud, D.K., et al. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inform. Process. Syst. https://doi.org/10.48550/arXiv.1509.09292 (2015).Kim, S., Bolton, E. E. & Bryant, S. H. PubChem3D: Conformer ensemble accuracy. J. Cheminform. 5, 1. https://doi.org/10.1186/1758-2946-5-1 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Charoenkwan, P., Nantasenamat, C., Hasan, M. M. & Shoombuatong, W. Meta-iPVP: A sequence-based meta-predictor for improving the prediction of phage virion proteins using effective feature representation. J. Comput. Aided Mol. Des. 34, 1105–1116. https://doi.org/10.1007/s10822-020-00323-z (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Waterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-303. https://doi.org/10.1093/nar/gky427 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 27, 343–350. https://doi.org/10.1093/bioinformatics/btq662 (2011).Article 
CAS 
PubMed 

Google Scholar 
Uberuaga, B. P., Anghel, M. & Voter, A. F. Synchronization of trajectories in canonical molecular-dynamics simulations: Observation, explanation, and exploitation. J. Chem. Phys. 120, 6363–6374. https://doi.org/10.1063/1.1667473 (2004).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690. https://doi.org/10.1063/1.448118 (1984).Article 
ADS 
CAS 

Google Scholar 
Klaewkla, M., Charoenwongpaiboon, T. & Mahalapbutr, P. Molecular basis of the new COVID-19 target neuropilin-1 in complex with SARS-CoV-2 S1 C-end rule peptide and small-molecule antagonists. J. Mol. Liq. 335, 116537. https://doi.org/10.1016/j.molliq.2021.116537 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935. https://doi.org/10.1063/1.445869 (1983).Article 
ADS 
CAS 

Google Scholar 
Chen, R., Li, L. & Weng, Z. ZDOCK: An initial-stage protein-docking algorithm. Proteins. 52, 80–87. https://doi.org/10.1002/prot.10389 (2003).Article 
CAS 
PubMed 

Google Scholar 
Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095. https://doi.org/10.1021/ct400341p (2013).Article 
CAS 
PubMed 

Google Scholar 
Miller, B.R., McGee, T.D.J., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J Chem Theory Comput. 8, 3314–21. https://doi.org/10.1021/ct300418h (2012)

Hot Topics

Related Articles