Electrocatalytic continuous flow chlorinations with iodine(I/III) mediators

Wirth, T. & Hirt, U. H. Hypervalent iodine compounds: recent advances in synthetic applications. Synthesis 1271–1287 (1999).Yoshimura, A. & Zhdankin, V. V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev. 116, 3328–3435 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wang, X. & Studer, A. Iodine(III) Reagents in Radical Chemistry. Acc. Chem. Res. 50, 1712–1724 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Willgerodt, C. Die Organischen Verbindungen mit mehrwertigem Jod. (Enke Verlag, Stuttgart, 1924).Sarie, J. C., Neufeld, J., Daniliuc, C. G. & Gilmour, R. Willgerodt-type Dichloro(aryl)-λ3-Iodanes: A Structural Study. Synthesis 51, 4408–4416 (2019).Article 
CAS 

Google Scholar 
Elsherbini, M. & Wirth, T. Hypervalent iodine reagents by anodic oxidation: a powerful green synthesis. Chem. Eur. J. 24, 13399–13407 (2018).Article 
CAS 
PubMed 

Google Scholar 
Francke, R. Electrogenerated hypervalent iodine compounds as mediators in organic synthesis. Curr. Opin. Electrochem. 15, 83–88 (2019).Article 
CAS 

Google Scholar 
Wirth, T. Iodine(III) mediators in electrochemical batch and flow reactions. Curr. Opin. Electrochem. 28, 100701 (2021).Article 
CAS 

Google Scholar 
Amatore, C., Savéant, J. M. & Tessier, D. Kinetics of electron transfer to organic molecules at solid electrodes in organic media. J. Electroanal. Chem. Interfacial Electrochem 146, 37–45 (1983).Article 
CAS 

Google Scholar 
Evans, D. H. One-electron and two-electron transfers in electrochemistry and homogeneous solution reactions. Chem. Rev. 108, 2113–2144 (2008).Article 
CAS 
PubMed 

Google Scholar 
Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).Article 
CAS 
PubMed 

Google Scholar 
Amano, Y. & Nishiyama, S. Oxidative synthesis of azacyclic derivatives through the nitrenium ion: application of a hypervalent iodine species electrochemically generated from iodobenzene. Tetrahedron Lett. 47, 6505–6507 (2006).Article 
CAS 

Google Scholar 
Inoue, K., Ishikawa, Y. & Nishiyama, S. Synthesis of tetrahydropyrroloiminoquinone alkaloids based on electrochemically generated hypervalent iodine oxidative cyclization.Org. Lett. 12, 436–439 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kajiyama, D., Inoue, K., Ishikawa, Y. & Nishiyama, S. A synthetic approach to carbazoles using electrochemically generated hypervalent iodine oxidant. Tetrahedron 66, 9779–9784 (2010).Article 
CAS 

Google Scholar 
Kajiyama, D., Saitoh, T. & Nishiyama, S. Application of electrochemically generated hypervalent iodine oxidant to natural products synthesis. Electrochemistry 81, 319–324 (2013).Article 
CAS 

Google Scholar 
Broese, T. & Francke, R. Electrosynthesis using a recyclable mediator–electrolyte system based on ionically tagged phenyl Iodide and 1,1,1,3,3,3-Hexafluoroisopropanol. Org. Lett. 18, 5896–5899 (2016).Article 
CAS 
PubMed 

Google Scholar 
Roesel, A. F., Broese, T., Májek, M. & Francke, R. Iodophenylsulfonates and iodobenzoates as redox-active supporting electrolytes for electrosynthesis. ChemElectroChem 6, 4229–4237 (2019).Article 
CAS 

Google Scholar 
Maity, A., Frey, B. L., Hoskinson, N. D. & Powers, D. C. Electrocatalytic C–N coupling via anodically generated hypervalent iodine intermediates. J. Am. Chem. Soc. 142, 4990–4995 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kong, X. et al. Electrochemical oxidative syntheses of NH-sulfoximines, NH-sulfonimidamides and dibenzothiazines via anodically generated hypervalent iodine intermediates. ChemSusChem 14, 3277–3282 (2021).Article 
CAS 
PubMed 

Google Scholar 
Koleda, O. et al. Synthesis of benzoxazoles using electrochemically generated hypervalent iodine. J. Org. Chem. 82, 11669–11681 (2017).Article 
CAS 
PubMed 

Google Scholar 
Elsherbini, M. et al. Continuous-flow electrochemical generator of hypervalent iodine reagents: synthetic applications. Angew. Chem. Int. Ed. 58, 9811–9815 (2019).Article 
CAS 

Google Scholar 
Winterson, B., Rennigholtz, T. & Wirth, T. Flow electrochemistry: a safe tool for fluorine chemistry. Chem. Sci. 12, 9053–9059 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fu, N., Sauer, G. S. & Lin, S. Electrocatalytic radical dichlorination of alkenes with nucleophilic chlorine sources. J. Am. Chem. Soc. 139, 15548–15553 (2017).Article 
CAS 
PubMed 

Google Scholar 
Siu, C. J., Fu, N., Lin, S. & Catalyzing Electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc. Chem. Res. 53, 547–560 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dong, X., Roeckl, J. L., Waldvogel, S. R. & Morandi, B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. Science 371, 507–514 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Strehl, J., Fastie, C. & Hilt, G. The Electrochemical cis-Chlorination of Alkenes. Chem. Eur. J. 27, 17341–17345 (2021).Article 
CAS 
PubMed 

Google Scholar 
Garvey, B. S., Halley, L. F. & Allen, C. F. H. Aryliododihalides as halogenating agents. J. Am. Chem. Soc. 59, 1827–1829 (1937).Article 
CAS 

Google Scholar 
Berg, C. J. & Wallis, E. S. Experimental studies in the steroids. A novel method for the preparation of sterol dichlorides. J. Biol. Chem. 162, 683–693 (1946).Article 
CAS 
PubMed 

Google Scholar 
Podgoršek, A. et al. Synthesis and reactivity of fluorous and nonfluorous aryl and alkyl iodine(iii) dichlorides: new chlorinating reagents that are easily recycled using biphasic protocols. J. Org. Chem. 74, 3133–3140 (2009).Article 
PubMed 

Google Scholar 
Nicolaou, K. C., Simmons, N. L., Ying, Y., Heretsch, P. M. & Chen, J. S. Enantioselective dichlorination of allylic alcohols. J. Am. Chem. Soc. 133, 8134–8137 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kitamura, T., Tazawa, Y., Morshed, M. H. & Kobayashi, S. Convenient chlorination with concentrated hydrochloric acid in the presence of iodosylbenzene. Synthesis 44, 1159–1162 (2012).Article 
CAS 

Google Scholar 
Thorat, P. B., Bhong, B. Y. & Karade, N. N. 2,4,6-Tris[(4-dichloroiodo)phenoxy)]−1,3,5-triazine as a new recyclable hypervalent iodine(III) reagent for chlorination and oxidation reactions. Synlett 24, 2061–2066 (2013).Article 
CAS 

Google Scholar 
Garve, L. K. B., Barkawitz, P., Jones, P. G. & Werz, D. B. Ring-opening 1,3-halochalcogenation of cyclopropane dicarboxylates. Org. Lett. 16, 5804–5807 (2014).Article 
CAS 
PubMed 

Google Scholar 
Willgerodt, C. Ueber einige aromatische Jodidchloride. J. Prakt. Chem. 33, 154–160 (1886).Article 

Google Scholar 
Yin, C. & Hu, P. Visible-light-induced cross-dehydrogenative coupling of heteroarenes with aliphatic alcohols mediated by iodobenzene dichloride. Eur. J. Org. Chem. 26, e202300015 (2023).Article 
CAS 

Google Scholar 
Sarie, J. C., Neufeld, J., Daniliuc, C. G. & Gilmour, R. Catalytic vicinal dichlorination of unactivated alkenes. ACS Catal. 9, 7232–7237 (2019).Article 
CAS 

Google Scholar 
Arnold, A. M., Binder, J., Kretzschmar, M. & Gulder, T. Alkene versus aryl chlorination in asymmetric hypervalent iodine catalysis: a case study. Synlett 35, 1001–1006 (2024).Article 
CAS 

Google Scholar 
Schmidt, H. & Meinert, H. Zum Mechanismus der elektrochemischen Fluorierung und über die Bildung von Jod-monofluorid. Angew. Chem. 72, 109–110 (1960).Article 
ADS 
CAS 

Google Scholar 
Haupt, J. D., Berger, M. & Waldvogel, S. R. Fluorocyclization of N-propargylamides to oxazoles by electrochemically generated ArIF2. Org. Lett. 21, 242–245 (2019).Article 
CAS 
PubMed 

Google Scholar 
Doobary, S., Sedikides, A. T., Caldora, H. P., Poole, D. L. & Lennox, A. J. J. Electrochemical vicinal difluorination of alkenes: scalable and amenable to electron-rich substrates. Angew. Chem. Int. Ed. 59, 1155–1160 (2020).Article 
CAS 

Google Scholar 
Elsherbini, M. & Wirth, T. Electroorganic synthesis under flow conditions. Acc. Chem. Res. 52, 3287–3296 (2019).Article 
CAS 
PubMed 

Google Scholar 
Noël, T., Cao, Y. & Laudadio, G. The fundamentals behind the use of flow reactors in electrochemistry. Acc. Chem. Res. 52, 2858–2869 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Tanbouza, N., Ollevier, T. & Lam, K. Bridging lab and industry with flow electrochemistry. iScience 23, 101720 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, D. et al. Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nat. Commun. 10, 2796 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wang, S. et al. Electrochemical flow aziridination of unactivated alkenes. Natl Sci. Rev. 10, nwad187 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zu, B., Ke, J., Guo, Y. & He, C. Synthesis of diverse aryliodine(III) reagents by anodic oxidation. Chin. J. Chem. 39, 627–632 (2021).Article 
CAS 

Google Scholar 
Lucas, H. J. & Kennedy, E. R. Iodobenzene dichloride. Org. Synth. 22, 69 (1942).Article 
CAS 

Google Scholar 
Ion electrochemical reactor, https://www.vapourtec.com/products/flow-reactors/ion-electrochemical-reactor-features/ (2024).Suga, S., Okajima, M., Fujiwara, K. & Yoshida, J.-I. “Cation Flow” method:  a new approach to conventional and combinatorial organic syntheses using electrochemical microflow systems. J. Am. Chem. Soc. 123, 7941–7942 (2001).Article 
CAS 
PubMed 

Google Scholar 
Pletcher, D., Green, R. A. & Brown, R. C. D. Flow electrolysis cells for the synthetic organic chemistry laboratory. Chem. Rev. 118, 4573–4591 (2018).Article 
CAS 
PubMed 

Google Scholar 
Laudadio, G. et al. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc. 141, 5664–5668 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhong, X. et al. Scalable flow electrochemical alcohol oxidation: maintaining high stereochemical fidelity in the synthesis of levetiracetam. Org. Process Res. Dev. 25, 2601–2607 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cresswell, A. J., Eey, S. T. C. & Denmark, S. E. Catalytic, stereoselective dihalogenation of alkenes: challenges and opportunities. Angew. Chem. Int. Ed. 54, 15642–15682 (2015).Article 
CAS 

Google Scholar 
Tanner, D. D. & Gidley, G. C. Mechanism of the addition of chlorine to olefins with iodobenzene dichloride. J. Org. Chem. 33, 38–43 (1968).Article 
CAS 

Google Scholar 
Kamp, J. V. D. & Sletzinger, M. The preparation of triphenylchloroethylene. J. Am. Chem. Soc. 63, 1879–1881 (1941).Article 

Google Scholar 
Fosu, S. C., Hambira, C. M., Chen, A. D., Fuchs, J. R. & Nagib, D. A. Site-selective C–H functionalization of (hetero)arenes via transient, non-symmetric iodanes. Chem 5, 417–428 (2019).Article 
CAS 
PubMed 

Google Scholar 
Garve, L. K. B., Barkawitz, P., Jones, P. G. & Werz, D. B. Ring-opening 1,3-dichlorination of donor–acceptor cyclopropanes by iodobenzene dichloride. Org. Lett. 16, 5804–5807 (2014).Article 
CAS 
PubMed 

Google Scholar 
Antonchick, A. P., Samanta, R., Kulikov, K. & Lategahn, J. Organocatalytic, oxidative, intramolecular c–h bond amination and metal-free cross-amination of unactivated arenes at ambient temperature. Angew. Chem. Int. Ed. 50, 8605–8608 (2011).Article 
CAS 

Google Scholar 
Singh, F. V., Shetgaonkar, S. E., Krishnan, M. & Wirth, T. Progress in organocatalysis with hypervalent iodine catalysts. Chem. Soc. Rev. 51, 8102–8139 (2022).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles