Ligand-tuning copper in coordination polymers for efficient electrochemical C–C coupling

Badwal, S. P., Giddey, S. S., Munnings, C., Bhatt, A. I. & Hollenkamp, A. F. Emerging electrochemical energy conversion and storage technologies. Front Chem. 2, 79 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Brinkert, K. & Mandin, P. Fundamentals and future applications of electrochemical energy conversion in space. npj Microgravity 8, 52 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).Article 
CAS 

Google Scholar 
Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2020).Article 

Google Scholar 
Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).Article 
CAS 

Google Scholar 
Stephens, I. E. L. et al. 2022 Roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).Bouckaert, S. et al. Net Zero by 2050 (International Energy Agency, 2021).Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012).Article 
CAS 

Google Scholar 
Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).Article 
ADS 
CAS 

Google Scholar 
Woldu, A. R., Huang, Z., Zhao, P., Hu, L. & Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 454, 214340 (2022).Article 
CAS 

Google Scholar 
Zhu, H. L. et al. A porous pi-pi stacking framework with dicopper(I) sites and adjacent proton relays for electroreduction of CO2 to C2+ products. J. Am. Chem. Soc. 144, 13319–13326 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ambre, R. B. et al. Molecular engineering for efficient and selective iron porphyrin catalysts for electrochemical reduction of CO2 to CO. Chem. Commun. 52, 14478–14481 (2016).Article 
CAS 

Google Scholar 
Han, J. et al. Bioinspired iron porphyrins with appended poly-pyridine/amine units for boosted electrocatalytic CO2 reduction reaction. eScience 2, 623–631 (2022).Article 

Google Scholar 
Zheng, J. et al. Non-negligible axial ligand effect on electrocatalytic CO2 reduction with iron porphyrin complexes. J. Phys. Chem. Lett. 13, 11811–11817 (2022).Article 
CAS 
PubMed 

Google Scholar 
Francke, R., Schille, B. & Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide-Methods, mechanisms, and catalysts. Chem. Rev. 118, 4631–4701 (2018).Article 
CAS 
PubMed 

Google Scholar 
Oh, S., Gallagher, J. R., Miller, J. T. & Surendranath, Y. Graphite-conjugated rhenium catalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 1820–1823 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).Article 
ADS 
CAS 

Google Scholar 
Sui, J. et al. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 34, e2109203 (2022).Article 
PubMed 

Google Scholar 
Tang, C. et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021).Article 
CAS 
PubMed 

Google Scholar 
Cai, Y. et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 12, 586 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cao, D. et al. Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat. Commun. 13, 5843 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, H. B. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).Article 
ADS 
CAS 

Google Scholar 
Zhang, T. et al. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 13, 6875 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pan, F. et al. Boosting CO2 reduction on Fe-N-C with sulfur incorporation: synergistic electronic and structural engineering. Nano Energy 68, 104384 (2020).Article 
CAS 

Google Scholar 
Lai, W. H., Miao, Z., Wang, Y. X., Wang, J. Z. & Chou, S. L. Atomic-local environments of single-atom catalysts: Synthesis, electronic structure, and activity. Adv. Energy Mater. 9, 1900722 (2019).Article 
CAS 

Google Scholar 
Bai, X. et al. Dynamic stability of copper single-atom catalysts under working conditions. J. Am. Chem. Soc. 144, 17140–17148 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yang, J. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144, 12062–12071 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhang, T. et al. Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion. Nat. Commun. 12, 5265 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liang, Y. et al. Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling. Nat. Commun. 14, 474 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Franco, F., Rettenmaier, C., Jeon, H. S. & Roldan Cuenya, B. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem. Soc. Rev. 49, 6884–6946 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wu, H. et al. Selective and energy-efficient electrosynthesis of ethylene from CO2 by tuning the valence of Cu catalysts through aryl diazonium functionalization. Nat. Energy 9, 422–433 (2024).Di Girolamo, A. et al. 4-Phenyl-1,2,3-triazoles as versatile ligands for cationic cyclometalated iridium(III) complexes. Inorg. Chem. 61, 8509–8520 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, W. et al. Insights into triazole derivatives as potential corrosion inhibitors in CMP process: experimental evaluation and theoretical analysis. Appl. Surf. Sci. 602, 154165 (2022).Article 
CAS 

Google Scholar 
Finšgar, M. & Milošev, I. Inhibition of copper corrosion by 1,2,3-benzotriazole: a review. Corros. Sci. 52, 2737–2749 (2010).Article 

Google Scholar 
Meldal, M. & Diness, F. Recent fascinating aspects of the CuAAC click reaction. Trends Chem. 2, 569–584 (2020).Article 
CAS 

Google Scholar 
Wamhoff, H. 4.11 – 1,2,3-Triazoles and their benzo derivatives. Compr. Heterocycl. Chem. 5, 669–732 (1984).
Google Scholar 
Boubnov, A., Gremminger, A., Casapu, M., Deutschmann, O. & Grunwaldt, J.-D. Dynamics of the reversible inhibition during methane oxidation on bimetallic Pd-Pt catalysts studied by modulation-excitation XAS and DRIFTS. ChemCatChem 14, e202200573 (2022).Article 
CAS 

Google Scholar 
Finzel, J. et al. Limits of detection for EXAFS characterization of heterogeneous single-atom catalysts. ACS Catal. 13, 6462–6473 (2023).Article 
CAS 

Google Scholar 
Zhu, S., Jiang, B., Cai, W. B. & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gunathunge, C. M., Ovalle, V. J., Li, Y., Janik, M. J. & Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 8, 7507–7516 (2018).Article 
CAS 

Google Scholar 
Wei, X. et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10, 4103–4111 (2020).Article 
CAS 

Google Scholar 
Kim, Y. et al. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13, 4301–4311 (2020).Article 
CAS 

Google Scholar 
Chang, X. et al. Determining intrinsic stark tuning rates of adsorbed CO on copper surfaces. Catal. Sci. Technol. 11, 6825–6831 (2021).Article 
CAS 

Google Scholar 
Garza, A. J., Bell, A. T. & Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018).Article 
CAS 

Google Scholar 
Todorova, T. K., Schreiber, M. W. & Fontecave, M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 10, 1754–1768 (2019).Article 

Google Scholar 
Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).Article 
CAS 

Google Scholar 
Li, Y. et al. Influence of electron-donating ability of ligand and pH value on MLCT properties of cyanido-bridged complexes. Inorg. Chem. Commun. 140, 109446 (2022).Article 
CAS 

Google Scholar 
Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).Article 
CAS 

Google Scholar 
Kuo, T.-C. et al. First-principles study of C–C coupling pathways for CO2 electrochemical reduction catalyzed by Cu(110). J. Phys. Chem. C. 125, 2464–2476 (2021).Article 
CAS 

Google Scholar 
Cao, Y. et al. Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. Nat. Commun. 14, 2387 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).Article 
ADS 
CAS 

Google Scholar 
Fielicke, A., Gruene, P., Meijer, G. & Rayner, D. M. The adsorption of CO on transition metal clusters: a case study of cluster surface chemistry. Surf. Sci. 603, 1427–1433 (2009).Article 
ADS 
CAS 

Google Scholar 
Sung, S. S. & Hoffmann, R. How carbon monoxide bonds to metal surfaces. J. Am. Chem. Soc. 107, 578–584 (1985).Article 
CAS 

Google Scholar 
Yang, W. et al. Why is C–C coupling in CO2 reduction still difficult on dual-atom electrocatalysts? ACS Catal. 13, 9695–9705 (2023).Article 
CAS 

Google Scholar 
Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).Article 
CAS 

Google Scholar 
Richard, D. et al. Quantifying transport and electrocatalytic reaction processes in a gastight rotating cylinder electrode reactor via integration of Computational Fluid Dynamics modeling and experiments. Electrochim. Acta 440, 141698 (2023).Article 
CAS 

Google Scholar 
Shen, K. et al. On the origin of carbon sources in the electrochemical upgrade of CO2 from carbon capture solutions. Joule 7, 1260–1276 (2023).Article 
CAS 

Google Scholar 
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).Article 
CAS 
PubMed 

Google Scholar 
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens Matter Mater. Phys. 54, 11169–11186 (1996).Article 
ADS 
CAS 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater. Sci. 6, 15–50 (1996).Article 
CAS 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).Article 
ADS 
CAS 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).Article 
ADS 
PubMed 

Google Scholar 
Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).Article 
ADS 
PubMed 

Google Scholar 

Hot Topics

Related Articles