Removal of hydrocarbon pollutants from refinery wastewater using N-hexadecylchitosan as an efficient adsorptive platform

Chen, Y. C. Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology. J. Clean. Prod. 192, 262–269. https://doi.org/10.1016/j.jclepro.2018.04.260 (2018).Article 

Google Scholar 
Younis, S. A., Maitlo, H. A., Lee, J. & Kim, K. H. Nanotechnology-based sorption and membrane technologies for the treatment of petroleum-based pollutants in natural ecosystems and wastewater streams. Adv. Coll. Interface Sci. 275, 102071. https://doi.org/10.1016/j.cis.2019.102071 (2020).Article 
CAS 

Google Scholar 
Diya’uddeen, B. H., Daud, W. M. A. W. & Aziz, A. A. Treatment technologies for petroleum refinery effluents: A review. Process Saf. Environ. Prot. 89(2), 95–105. https://doi.org/10.1016/j.psep.2010.11.003 (2011).Article 
CAS 

Google Scholar 
Ahmed, S. N. & Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 29(34), 342001. https://doi.org/10.1088/1361-6528/aac6ea (2018).Article 
CAS 
PubMed 

Google Scholar 
Al-Shamrani, A., James, A. & Xiao, H. Destabilisation of oil–water emulsions and separation by dissolved air flotation. Water Res. 36(6), 1503–1512. https://doi.org/10.1016/S0043-1354(01)00347-5 (2002).Article 
CAS 
PubMed 

Google Scholar 
Yan, L. et al. Comparative study of different electrochemical methods for petroleum refinery wastewater treatment. Desalination 341, 87–93. https://doi.org/10.1016/j.desal.2014.02.037 (2014).Article 
CAS 

Google Scholar 
Singh, B., Singh, J. P., Kaur, A. & Singh, N. Bioactive compounds in banana and their associated health benefits–A review. Food Chem. 206, 1–11. https://doi.org/10.1016/j.foodchem.2016.03.033 (2016).Article 
CAS 
PubMed 

Google Scholar 
Ishak, W. W. et al. Quality of life in patients suffering from insomnia. Innov. Clin. Neurosci. 9(10), 13 (2012).PubMed 
PubMed Central 

Google Scholar 
Sudhakar, S., Moondra, N. & Christian, R. A. A comparative study on treatment of CETP wastewater using SBR and SBR-IFAS process. Water Conserv. Manag. 6(1), 51–54 (2022).Article 

Google Scholar 
Nwankwoala, H. O., Harry, M. T. & Warmate, T. Assessing aquifer vulnerability and contaminant plume at artisanal refining sites in parts of Okrika and Ogu-Bolo local government areas, rivers state Nigeria. Water Conserv. Manag. 4(2), 68–72. https://doi.org/10.26480/wcm.02.2020.68.72 (2020).Article 

Google Scholar 
Nguyen, T. H., Le, T. H., Le, V. V. & Dong, T. M. H. A Study on selection of ballast water treatment technologies to meet BWM 2004 convention. Water Conserv. Manag. 5(1), 53–59. https://doi.org/10.26480/wcm.01.2021.53.59 (2021).Article 

Google Scholar 
Sakthivadivel, M., Nirmala, A., Sakthivadivel, J., Mukhilan, R. R. & Tennyson, S. Physicochemical and biological parameters of water at industrial sites of metropolitan city of Chennai, Tamil Nadu India. Water Conserv. Manag. 4(2), 90–98. https://doi.org/10.26480/wcm.02.2020.90.98 (2020).Article 

Google Scholar 
Wan, Q., Wu, X., Hou, Z., Ma, Y. & Wang, L. Organophotoelectrocatalytic C(sp2)–H alkylation of heteroarenes with unactivated C(sp3)–H compounds. Chem. Commun. https://doi.org/10.1039/D4CC01335B (2024).Article 

Google Scholar 
Tomoki, S. et al. Development of carbon nanotube as highly active photocatatlytic adsorbent for treatment of acid red 88 dye. Water Conserv. Manag. 5(1), 26–29 (2021).
Google Scholar 
Ilyas, M. et al. Removal of anthracene from vehicle-wash wastewater through adsorption using eucalyptus wood waste-derived biochar. Desalin. Water Treat. https://doi.org/10.1016/j.dwt.2024.100115 (2024).Article 

Google Scholar 
Abdrashitova, R. N. et al. Synthesis of ZNO doped multi walled carbon nanotubes (MWNTS) for dyes degradation and water purification. Water Conserv. Manag. 7(1), 01–05. https://doi.org/10.26480/wcm.01.2023.01.05 (2023).Article 

Google Scholar 
Abdulwahid, K. D. Phytoremediation of cadmium pollutants in wastewater by using Ceratophyllum demersum L. as an aquatic macrophytes. Water Conserv. Manag. 7(2), 83–88. https://doi.org/10.26480/wcm.02.2023.83.88 (2023).Article 
MathSciNet 

Google Scholar 
Peters, T. Membrane technology for water treatment. Chem. Eng. Technol. 33(8), 1233–1240. https://doi.org/10.1002/ceat.201000139 (2010).Article 
CAS 

Google Scholar 
Karabach, Y. Y., Kopylovich, M. N., Mahmudov, K. T. & Pombeiro, A. J. Microwave-assisted catalytic oxidation of alcohols to carbonyl compounds. In Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee Organometallic Chemistry Celebratory Book (ed. Pombeiro, A. J. L.) (Wiley, 2013).
Google Scholar 
Vilardi, G., Di Palma, L. & Verdone, N. Heavy metals adsorption by banana peels micro-powder: Equilibrium modeling by non-linear models. Chin. J. Chem. Eng. 26(3), 455–464. https://doi.org/10.1016/j.cjche.2017.06.026 (2018).Article 
CAS 

Google Scholar 
Prasad, R. & Yadav, K. D. Use of response surface methodology and artificial neural network approach for methylene blue removal by adsorption onto water hyacinth. Water Conserv. Manag. 4(2), 83–89. https://doi.org/10.26480/wcm.02.2020.83.89 (2020).Article 

Google Scholar 
Bullo, T. A. & Bayisa, Y. M. Optimizing the removal efficiency of chromium from tanning plant effluent by adsorption method with activated carbon chat stems (catha edulis) using response surface methodology. Water Conserv. Manag. 6(1), 15–21. https://doi.org/10.26480/wcm.01.2022.15.21 (2022).Article 

Google Scholar 
Dibaba, W. T. & Ebsa, D. G. Identifying erosion hot spot areas and evaluation of best management practices in the toba watershed ethiopia. Water Conserv. Manag. 6(1), 30–38. https://doi.org/10.26480/wcm.01.2022.30.38 (2022).Article 

Google Scholar 
Dotto, G. L. & McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 8(4), 103988. https://doi.org/10.1016/j.jece.2020.103988 (2020).Article 
CAS 

Google Scholar 
Bubanale, S. & Shivashankar, M. History, method of production, structure and applications of activated carbon. Int. J. Eng. Res 6, 495–498 (2017).
Google Scholar 
Wang, Y., Peng, C., Padilla-Ortega, E., Robledo-Cabrera, A. & López-Valdivieso, A. Cr (VI) adsorption on activated carbon: Mechanisms, modeling and limitations in water treatment. J. Environ. Chem. Eng. 8(4), 104031. https://doi.org/10.1016/j.jece.2020.104031 (2020).Article 
CAS 

Google Scholar 
Lutzu, G. A. et al. Latest developments in wastewater treatment and biopolymer production by microalgae. J. Environ. Chem. Eng. 9(1), 104926. https://doi.org/10.1016/j.jece.2020.104926 (2021).Article 
CAS 

Google Scholar 
Zhu, S. et al. Near-complete recycling of real mix electroplating sludge as valuable metals via Fe/Cr co-crystallization and stepwise extraction route. J. Environ. Manag. 358, 120821. https://doi.org/10.1016/j.jenvman.2024.120821 (2024).Article 
CAS 

Google Scholar 
Debela, S. K. & Feyessa, F. F. Rainfall-runoff modeling and its prioritization at sub-watershed level using swat model: A case of Finca’aa, Oromia Western Ethiopia. Water Conserv. Manag. 6(1), 22–29 (2022).Article 

Google Scholar 
Shen, Y., Sun, P., Ye, L. & Xu, D. Progress of anaerobic membrane bioreactor in municipal wastewater treatment. Sci. Adv. Mater. 15(10), 1277–1298. https://doi.org/10.1166/sam.2023.4531 (2023).Article 
CAS 

Google Scholar 
Periayah, M. H., Halim, A. S. & Saad, A. Z. M. Chitosan: A promising marine polysaccharide for biomedical research. Phcog. Rev. 10(19), 39. https://doi.org/10.4103/0973-7847.176545 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aranaz, I. et al. Chitosan: An overview of its properties and applications. Polymers 13(19), 3256. https://doi.org/10.3390/polym13193256 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fan, L. et al. Fabrication of magnetic chitosan nanoparticles grafted with β-cyclodextrin as effective adsorbents toward hydroquinol. Coll. Surf. B Biointerfaces 95, 42–49. https://doi.org/10.1016/j.colsurfb.2012.02.007 (2012).Article 
CAS 

Google Scholar 
Pinto, E. P. et al. Copaiba essential oil loaded-nanocapsules film as a potential candidate for treating skin disorders: Preparation, characterization, and antibacterial properties. Int. J. Pharm. https://doi.org/10.1016/j.ijpharm.2023.122608 (2023).Article 
PubMed 

Google Scholar 
de Queiroz, A. R. S. C. M. et al. Preparation and characterization of chitosan obtained from shells of shrimp (litopenaeus vannamei Boone). Mar. Drugs 15(5), 141. https://doi.org/10.3390/md15050141 (2017).Article 
CAS 

Google Scholar 
Divya, K., Rebello, S., Jisha, M. A simple and effective method for extraction of high purity chitosan from shrimp shell waste. In Proc. of the international conference on advances in applied science and environmental engineering-ASEE, 10.15224/ 978-1-63248-004-0-93 (2014).Vimal, S. et al. Synthesis and characterization of CS/TPP nanoparticles for oral delivery of gene in fish. Aquaculture 358, 14–22. https://doi.org/10.1016/j.aquac.2012.06.012 (2012).Article 

Google Scholar 
Rasti, H., Parivar, K., Baharara, J., Iranshahi, M. & Namvar, F. Chitin from the mollusc chiton: Extraction, characterization and chitosan preparation. Iran. J. Pharm Res. 16(1), 366 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
Song, R., Xue, R., He, L. H., Liu, Y. & Xiao, Q. L. The structure and properties of chitosan/polyethylene glycol/silica ternary hybrid organic-inorganic films. Ch. J. Polym. Sci. 26(05), 621–630 (2008).Article 
CAS 

Google Scholar 
Ahmad, W. et al. Batch mode and continuous flow adsorption of hydrocarbon pollutants from refinery wastewater using graphene oxide derived from fish scales. Environ. Sci. Water Res. Technol. 9(8), 2089–2098 (2023).Article 
CAS 

Google Scholar 
Parande, A. K., Sivashanmugam, A., Beulah, H. & Palaniswamy, N. Performance evaluation of low cost adsorbents in reduction of COD in sugar industrial effluent. J. Hazard. Mater. 168(2–3), 800–805. https://doi.org/10.1016/j.jhazmat.2009.02.098 (2009).Article 
CAS 
PubMed 

Google Scholar 
Omer, A. M. et al. Kinetic and thermodynamic studies for the sorptive removal of crude oil spills using a low-cost chitosan-poly (butyl acrylate) grafted copolymer. Desalin. Water Treat. 192, 213–225. https://doi.org/10.5004/dwt.2020.25704 (2020).Article 
CAS 

Google Scholar 
El-Naas, M. H., Al-Zuhair, S. & Alhaija, M. A. Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. J. Hazard. Mater. 173(1–3), 750–757 (2010).Article 
CAS 
PubMed 

Google Scholar 
Nekoo, S. & Fatemi, S. Experimental study and adsorption modeling of COD reduction by activated carbon for wastewater treatment of oil refinery. Iran. J. Chem. Chem. Eng. (IJCCE) 32(3), 81–89. https://doi.org/10.30492/ice.2013.5834 (2013).Article 

Google Scholar 
Devi, M. G., Al-Moshrafi, S. M. K., Al Hudaifi, A. & Al Aisari, B. H. Treatment of refinery waste water using environmental friendly adsorbent. J. Inst. Eng. India Ser. E https://doi.org/10.1007/s40034-017-0105-0 (2017).Article 

Google Scholar 
Khader, E. H. et al. Removal of organic pollutants from produced water by batch adsorption treatment. Clean Technol. Environ. Policy https://doi.org/10.1007/s10098-021-02159-z (2021).Article 

Google Scholar 

Hot Topics

Related Articles