Mechanistic insight into benzylidene-directed glycosylation reactions using cryogenic infrared spectroscopy

Boltje, T. J., Buskas, T. & Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622 (2009).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Seeberger, P. H. Chemical glycobiology: why now? Nat. Chem. Biol. 5, 368–372 (2009).Article 
PubMed 
CAS 

Google Scholar 
Mucha, E. et al. Unravelling the structure of glycosyl cations via cold-ion infrared spectroscopy. Nat. Commun. 9, 4174 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Panza, M., Pistorio, S. G., Stine, K. J. & Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem. Rev. 118, 8105–8150 (2018).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Kulkarni, S. S. et al. “One-pot” protection, glycosylation, and protection–glycosylation strategies of carbohydrates. Chem. Rev. 118, 8025–8104 (2018).Article 
PubMed 
CAS 

Google Scholar 
Marianski, M. et al. Remote participation during glycosylation reactions of galactose building blocks: direct evidence from cryogenic vibrational spectroscopy. Angew. Chem. Int. Ed. 59, 6166–6171 (2020).Article 
CAS 

Google Scholar 
Greis, K. et al. The influence of the electron density in acyl protecting groups on the selectivity of galactose formation. J. Am. Chem. Soc. 144, 20258–20266 (2022).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Braak, F. T. et al. Characterization of elusive reaction intermediates using infrared ion spectroscopy: application to the experimental characterization of glycosyl cations. Acc. Chem. Res. 55, 1669–1679 (2022).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Adero, P. O., Amarasekara, H., Wen, P., Bohé, L. & Crich, D. The experimental evidence in support of glycosylation mechanisms at the SN1–SN2 interface. Chem. Rev. 118, 8242–8284 (2018).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Hettikankanamalage, A. A., Lassfolk, R., Ekholm, F. S., Leino, R. & Crich, D. Mechanisms of stereodirecting participation and ester migration from near and far in glycosylation and related reactions. Chem. Rev. 120, 7104–7151 (2020).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Crich, D. Mechanism of a chemical glycosylation reaction. Acc. Chem. Res. 43, 1144–1153 (2010).Article 
PubMed 
CAS 

Google Scholar 
Crich, D. & Sun, S. Are glycosyl triflates intermediates in the sulfoxide glycosylation method? A chemical and 1H, 13C, and 19F NMR spectroscopic investigation. J. Am. Chem. Soc. 119, 11217–11223 (1997).Article 
CAS 

Google Scholar 
Frihed, T. G., Bols, M. & Pedersen, C. M. Mechanisms of glycosylation reactions studied by low-temperature nuclear magnetic resonance. Chem. Rev. 115, 4963–5013 (2015).Article 
PubMed 
CAS 

Google Scholar 
Santana, A. G. et al. Dissecting the essential role of anomeric b-triflates in glycosylation reactions. J. Am. Chem. Soc. 142, 12501–12514 (2020).Article 
PubMed 
CAS 

Google Scholar 
Huang, M., Retailleau, P., Boh, L. & Crich, D. Cation clock permits distinction between the mechanisms of α- and β-O- and β-C-glycosylation in the mannopyranose series: evidence for the existence of a mannopyranosyl oxocarbenium ion. J. Am. Chem. Soc. 134, 14746–14749 (2012).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Huang, M. et al. Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects. Nat. Chem. 4, 663–667 (2012).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Zhuo, M. H., Wilbur, D. J., Kwan, E. E. & Bennett, C. S. Matching glycosyl donor reactivity to sulfonate leaving group ability permits SN2 glycosylations. J. Am. Chem. Soc. 141, 16743–16754 (2019).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
van der Vorm, S. et al. Acceptor reactivity in glycosylation reactions. Chem. Soc. Rev. 48, 4688–4706 (2019).Article 
PubMed 

Google Scholar 
Yang, M. T. & Woerpel, K. A. The effect of electrostatic interactions on conformational equilibria of multiply substituted tetrahydropyran oxocarbenium ions. J. Org. Chem. 74, 545–553 (2009).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Nokami, T. et al. Electrochemical generation of 2,3-oxazolidinone glycosyl triflates as an intermediate for stereoselective glycosylation. Beilstein J. Org. Chem. 8, 456–460 (2012).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Wei, P. & Kerns, R. J. Factors affecting stereocontrol during glycosidation of 2,3-oxazolidinone-protected 1-tolylthio-N-acetyl-d-glucosamine. J. Org. Chem. 70, 4195–4198 (2005).Article 
PubMed 
CAS 

Google Scholar 
Alabugin, I. V., Manoharan, M. & Zeidan, T. A. Homoanomeric effects in six-membered heterocycles. J. Am. Chem. Soc. 125, 14014–14031 (2003).Article 
PubMed 
CAS 

Google Scholar 
Chang, C.-W. et al. Unraveling the promoter effect and the roles of counterion exchange in glycosylation reaction. Sci. Adv. 9, eadk0531 (2023).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Chang, C. W., Lin, M. H., Wu, C. H., Chiang, T. Y. & Wang, C. C. Mapping mechanisms in glycosylation reactions with donor reactivity: avoiding generation of side products. J. Org. Chem. 85, 15945–15963 (2020).Article 
PubMed 
CAS 

Google Scholar 
van der Vorm, S., Overkleeft, H. S., van der Marel, G. A. & Codée, J. D. C. Stereoselectivity of conformationally restricted glucosazide donors. J. Org. Chem. 82, 4793–4811 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Andreana, P. R. & Crich, D. Guidelines for O-glycoside formation from first principles. ACS Cent. Sci. 7, 1454–1462 (2021).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Chatterjee, S., Moon, S., Hentschel, F., Gilmore, K. & Seeberger, P. H. An empirical understanding of the glycosylation reaction. J. Am. Chem. Soc. 140, 11942–11953 (2018).Article 
PubMed 
CAS 

Google Scholar 
Crich, D. En route to the transformation of glycoscience: a chemist’s perspective on internal and external crossroads in glycochemistry. J. Am. Chem. Soc. 143, 17–34 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
van der Vorm, S., Hansen, T., Overkleeft, H. S., van der Marel, G. A. & Codée, J. D. C. The influence of acceptor nucleophilicity on the glycosylation reaction mechanism. Chem. Sci. 8, 1867–1875 (2017).Article 
PubMed 

Google Scholar 
van der Vorm, S. et al. Mapping the relationship between glycosyl acceptor reactivity and glycosylation stereoselectivity. Angew. Chem. Int. Ed. 57, 8240–8244 (2018).Article 

Google Scholar 
Chang, C.-W. et al. Establishment of guidelines for the control of glycosylation reactions and intermediates by quantitative assessment of reactivity. Angew. Chem. Int. Ed. 58, 16775–16779 (2019).Article 
CAS 

Google Scholar 
Chang, C.-W. et al. Automated quantification of hydroxyl reactivities: prediction of glycosylation reactions. Angew. Chem. Int. Ed. 60, 12413–12423 (2021).Article 
CAS 

Google Scholar 
Franconetti, A. et al. Glycosyl oxocarbenium ions: structure, conformation, reactivity, and interactions. Acc. Chem. Res. 54, 2552–2564 (2021).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
D’Angelo, K. A. & Taylor, M. S. Borinic acid catalyzed stereo- and regioselective couplings of glycosyl methanesulfonates. J. Am. Chem. Soc. 138, 11058–11066 (2016).Article 
PubMed 

Google Scholar 
de Kleijne, F. F. J. et al. Detection and characterization of rapidly equilibrating glycosylation reaction intermediates using exchange NMR. J. Am. Chem. Soc. 145, 26190–26201 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Moons, P. H. et al. Characterization of elusive rhamnosyl dioxanium ions and their application in complex oligosaccharide synthesis. Nat. Commun. 15, 2257 (2024).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Amyes, T. L. & Jencks, W. P. Lifetimes of oxocarbenium ions in aqueous solution from common ion inhibition of the solvolysis of.alpha.-azido ethers by added azide ion. J. Am. Chem. Soc. 111, 7888–7900 (1989).Article 
CAS 

Google Scholar 
Merino, P. et al. Computational evidence of glycosyl cations. Org. Biomol. Chem. 19, 2350–2365 (2021).Article 
PubMed 
CAS 

Google Scholar 
Hansen, T. et al. Defining the SN1 side of glycosylation reactions: stereoselectivity of glycopyranosyl cations. ACS Cent. Sci. 5, 781–788 (2019).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Adero, P. O. et al. Cation clock reactions for the determination of relative reaction kinetics in glycosylation reactions: applications to gluco- and mannopyranosyl sulfoxide and trichloroacetimidate type donors. J. Am. Chem. Soc. 137, 10336–10345 (2015).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Martin, A. et al. Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nat. Chem. 8, 186–191 (2016).Article 
PubMed 
CAS 

Google Scholar 
Greis, K. et al. Studying the key intermediate of RNA autohydrolysis by cryogenic gas-phase infrared spectroscopy. Angew. Chem. Int. Ed. 61, e2021154 (2022).
Google Scholar 
Greis, K. et al. Neighboring group participation of benzoyl protecting groups in C3- and C6-fluorinated glucose. Eur. J. Org. Chem. 2022, e202200255 (2022).Article 
CAS 

Google Scholar 
Hansen, T. et al. Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions. Nat. Commun. 11, 2664 (2020).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Remmerswaal, W. A. et al. Stabilization of glucosyl dioxolenium ions by “dual participation” of the 2,2-dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA) protection group for 1,2-cis-glucosylation. J. Org. Chem. 87, 9139–9147 (2022).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Elferink, H. et al. Direct experimental characterization of glycosyl cations by infrared ion spectroscopy. J. Am. Chem. Soc. 140, 6034–6038 (2018).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Greis, K. et al. Direct experimental characterization of the ferrier glycosyl cation in the gas phase. Org. Lett. 22, 8916–8919 (2020).Article 
PubMed 
CAS 

Google Scholar 
Greis, K. et al. The impact of leaving group anomericity on the structure of glycosyl cations of protected galactosides. ChemPhysChem 21, 1905–1907 (2020).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Greis, K., Kirschbaum, C., von Helden, G. & Pagel, K. Gas-phase infrared spectroscopy of glycans and glycoconjugates. Curr. Opin. Struct. Biol. 72, 194–202 (2022).Article 
PubMed 
CAS 

Google Scholar 
Gray, C. J. et al. Advancing solutions to the carbohydrate sequencing challenge. J. Am. Chem. Soc. 141, 14463–14479 (2019).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Grabarics, M. et al. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev. 122, 7840–7908 (2022).Article 
PubMed 
CAS 

Google Scholar 
Wieland, S. et al. The new IR and THz FEL facility at the Fritz Haber Institute in Berlin. Proc. SPIE 9512, 9512L (2015).
Google Scholar 
Pracht, P., Bohle, F. & Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 22, 7169–7192 (2020).Article 
PubMed 
CAS 

Google Scholar 
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).Article 
PubMed 
CAS 

Google Scholar 
Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).Article 
CAS 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).Article 
PubMed 

Google Scholar 
Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).Ko, Y.-C. et al. Microwave-assisted one-pot synthesis of 1,6-anhydrosugars and orthogonally protected thioglycosides. J. Am. Chem. Soc. 136, 14425–14431 (2014).Article 
PubMed 
CAS 

Google Scholar 
Crich, D., de la Mora, M. & Vinod, A. U. Influence of the 4,6-O-benzylidene, 4,6-O-phenylboronate, and 4,6-O-polystyrylboronate protecting groups on the stereochemical outcome of thioglycoside-based glycosylations mediated by 1-benzenesulfinyl piperidine/triflic anhydride and n-iodosuccinimide/trimethylsilyl triflate. J. Org. Chem. 68, 8142–8148 (2003).Article 
PubMed 
CAS 

Google Scholar 
Meyer, T., Gabelica, V., Grubmüller, H. & Orozco, M. Proteins in the gas phase. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 408–425 (2013).Article 
CAS 

Google Scholar 
Esser, T. K. et al. Cryo-EM of soft-landed β-galactosidase: gas-phase and native structures are remarkably similar. Sci. Adv. 10, eadl4628 (2024).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Elferink, H. et al. The glycosylation mechanisms of 6,3-uronic acid lactones. Angew. Chem. Int. Ed. 58, 8746–8751 (2019).Article 
CAS 

Google Scholar 
Elferink, H. et al. Competing C-4 and C-5-acyl stabilization of uronic acid glycosyl cations. Chem. Eur. J. 28, e202201724 (2022).Article 
PubMed 
CAS 

Google Scholar 
Merx, J. et al. Identification of Δ-1-pyrroline-5-carboxylate derived biomarkers for hyperprolinemia type II. Commun. Biol. 5, 997 (2022).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Klamt, A. & Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2, 799–805 (1993).Article 

Google Scholar 
Warnke, S. et al. Protomers of benzocaine: solvent and permittivity dependence. J. Am. Chem. Soc. 137, 4236–4242 (2015).Article 
PubMed 
CAS 

Google Scholar 
Andris, E., Jasik, J., Gomez, L., Costas, M. & Roithova, J. Spectroscopic characterization and reactivity of triplet and quintet iron(IV) Oxo complexes in the gas phase. Angew. Chem. Int. Ed. 55, 3637–3641 (2016).Article 
CAS 

Google Scholar 
Roithová, J., Gray, A., Andris, E., Jašík, J. & Gerlich, D. Helium tagging infrared photodissociation spectroscopy of reactive ions. Acc. Chem. Res. 49, 223–230 (2016).Article 
PubMed 

Google Scholar 
Bechtella, L. et al. Ion mobility-tandem mass spectrometry of mucin-type O-glycans. Nat. Commun. 15, 2611 (2024).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Polewski, L., Springer, A., Pagel, K. & Schalley, C. A. Gas-phase structural analysis of supramolecular assemblies. Acc. Chem. Res. 54, 2445–2456 (2021).Article 
PubMed 
CAS 

Google Scholar 
Fuster, F., Sevin, A. & Silvi, B. Topological analysis of the electron localization function (ELF) applied to the electrophilic aromatic substitution. J. Phys. Chem. A 104, 852–858 (2000).Article 
CAS 

Google Scholar 
Li, Y., Lin, M., Tian, M., Ye, G. & Zhao, X. DFT computational and spectroscopic studies on andrographolide from different solvent effect. J. Mol. Liq. 390, 123059 (2023).Article 
CAS 

Google Scholar 
Kirschbaum, C. et al. Unveiling glycerolipid fragmentation by cryogenic infrared spectroscopy. J. Am. Chem. Soc. 143, 14827–14834 (2021).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Hot Topics

Related Articles