Atomically precise inorganic helices with a programmable irrational twist

Moser, H. E. & Dervan, P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238, 645–650 (1987).Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Hirschberg, J. et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407, 167–170 (2000).Article 
PubMed 
CAS 

Google Scholar 
Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).Article 
PubMed 
CAS 

Google Scholar 
Chang, G. Q. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).Article 
PubMed 
CAS 

Google Scholar 
Liu, Y. Z., Xiao, J., Koo, J. & Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 20, 638–644 (2021).Peng, B., Murakami, S., Monserrat, B. & Zhang, T. Degenerate topological line surface phonons in quasi-1D double helix crystal SnIP. NPJ Comput. Mater. 7, 195 (2021).Bierman, M. J. et al. Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008).Article 
PubMed 
CAS 

Google Scholar 
Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019).Article 
PubMed 
CAS 

Google Scholar 
Zhu, J. et al. Formation of chiral branched nanowires by the Eshelby twist. Nat. Nanotechnol. 3, 477–481 (2008).Article 
PubMed 
CAS 

Google Scholar 
Gao, P. X. et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005).Article 
PubMed 
CAS 

Google Scholar 
Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).Article 
PubMed 
CAS 

Google Scholar 
Zhang, L. M. et al. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 14, 6418–6423 (2014).Article 
PubMed 
CAS 

Google Scholar 
Pfister, D. et al. Inorganic double helices in semiconducting SnIP. Adv. Mater. 28, 9783–9791 (2016).Article 
PubMed 
CAS 

Google Scholar 
Reiter, F. et al. SnBrP-A SnIP-type representative in the Sn–Br–P system. Z. Anorg. Allg. Chem. 648, e202100347 (2022).Article 
CAS 

Google Scholar 
Müller, U. Die symmetrie von Spiralketten. Acta Crystallogr. Sect. B 73, 443–452 (2017).Article 

Google Scholar 
Bette, S. et al. Corrosion of heritage objects: collagen‐like triple helix found in the calcium acetate hemihydrate crystal structure. Angew. Chem. Int. Ed. 59, 9438–9442 (2020).Article 
CAS 

Google Scholar 
Xiao, Q. et al. A metal–organic framework with rod secondary building unit based on the Boerdijk–Coxeter helix. Chem. Commun. 52, 11543–11546 (2016).Article 
CAS 

Google Scholar 
Hartl, H. et al. [(C6H5)4P]1∞[Cu3I4]—the first compound with a helical chain of face-sharing tetrahedra as a structural element. Angew. Chem. Int. Ed. 33, 1841–1842 (1994).Berisio, R., Vitagliano, L., Mazzarella, L. & Zagari, A. Crystal structure of the collagen triple helix model [(Pro–Pro–Gly)10]3. Protein Sci. 11, 262–270 (2002).Zheng, C., Hoffmann, R. & Nelson, D. R. A helical face-sharing tetrahedron chain with irrational twist, stella-quadrangula, and related matters. J. Am. Chem. Soc. 112, 3784–3791 (1990).Sadoc, J. F. & Rivier, N. Boerdijk–Coxeter helix and biological helices. Eur. Phys. J. B 12, 309–318 (1999).Sadoc, J. F. & Rivier, N. Boerdijk–Coxeter helix and biological helices as quasicrystals. Mater. Sci. Eng. A 294–296, 397–400 (2000).Zhu, Y. H. et al. Chiral gold nanowires with Boerdijk–Coxeter–Bernal structure. J. Am. Chem. Soc. 136, 12746–12752 (2014).Article 
PubMed 
CAS 

Google Scholar 
Lord, E. A., Mackay, A. L. & Ranganathan, S. New Geometries for New Materials (Cambridge Univ. Press, 2006).Fuller, R. B. Synergetics: Explorations in the Geometry of Thinking (Estate of R. Buckminster Fuller, 1982).Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nat. Photonics 7, 177–187 (2013).Hu, R. & Tian, Z. Direct observation of phonon Anderson localization in Si/Ge aperiodic superlattices. Phys. Rev. B 103, 045304 (2021).Silva, J., Vasconcelos, M. S., Anselmo, D. H. A. L. & Mello, V. D. Phononic topological states in 1D quasicrystals. J. Phys. Condens. Matter 31, 505405 (2019).Balandin, A. A. et al. One-dimensional van der Waals quantum materials. Mater. Today 55, 74–91 (2022).Article 

Google Scholar 
Sawitzki, G. et al. Crystal structures of InTeI and InSeI. Mater. Res. Bull. 15, 753–762 (1980).Article 
CAS 

Google Scholar 
Kniep, R. et al. Phasenbeziehungen und intermediäre Verbindungen in Systemen GaX3–Ga2S3 und InX3–In2S3 (X = Cl, Br, I)/Phase relations and intermediate compounds in systems GaX3–Ga2S3 and InX3–In2S3 (X = Cl, Br, I). Z. Naturforsch. B 40, 26–31 (1985).Article 

Google Scholar 
Jiang, S. et al. Computational prediction of a novel 1D InSeI nanochain with high stability and promising wide-bandgap properties. Phys. Chem. Chem. Phys. 22, 27441–27449 (2020).Article 
PubMed 
CAS 

Google Scholar 
Chen, W. et al. Anisotropic correlation between the piezoelectricity and anion-polarizability difference in 2D phosphorene-type ternary GaXY (X = Se, Te; Y = F, Cl, Br, I) monolayers. J. Mater. Sci. 56, 8024–8036 (2021).Article 
CAS 

Google Scholar 
Sasmito, S. A., Anshory, M, Jihad, I. & Absor, M. A. U. Reversible spin textures with giant spin splitting in two-dimensional GaXY (X = Se, Te; Y= Cl, Br, I) compounds for a persistent spin helix. Phys. Rev. B 104, 115145 (2021).Zhang, S.-H. & Liu, B.-G. A controllable robust multiferroic GaTeCl monolayer with colossal 2D ferroelectricity and desirable multifunctionality. Nanoscale 10, 5990–5996 (2018).Cordova, D. L. M. et al. Sensitive thermochromic behavior of InSeI, a highly anisotropic and tubular 1D van der Waals Crystal. Adv. Mater. 36, 2312597 (2024).Article 
CAS 

Google Scholar 
Zhou, Y. et al. Higher-dimensional spin selectivity in chiral crystals. Preprint at https://arxiv.org/abs/2305.18637v1 (2023).Zhao, S. et al. Chirality-induced spin splitting in 1D InSeI. Appl. Phys. Lett. 123, 172404 (2023).Article 
CAS 

Google Scholar 
Choi, K. H. et al. One-dimensional van der Waals material InSeI with large band-gap for optoelectronic applications. J. Alloy Compd. 927, 166995 (2022).Article 
CAS 

Google Scholar 
Pielmeier, M. R., Karttunen, A. J. & Nilges, T. Toward atomic-scale inorganic double helices via carbon nanotube matrices—induction of chirality to carbon nanotubes. J. Phys. Chem. C 124, 13338–13347 (2020).Enkhbayar, P., Damdinsuren, S., Osaki, M. & Matsushima, N. HELFIT: helix fitting by a total least squares method. Comput. Biol. Chem. 32, 307–310 (2008).Lucas, A. A. & Lambin, P. Diffraction by DNA, carbon nanotubes and other helical nanostructures. Rep. Prog. Phys. 68, 1181–1249 (2005).Troyanov, S. I., Krahl, T. & Kemnitz, E. Crystal structures of GaX3 (X = Cl, Br, I) and AlI3. Z. Kristallogr. Crystal. Mater. 219, 88–92 (2004).Kuhn, A., Chevy, A. & Chevalier, R. Crystal structure and interatomic distances in GaSe. Phys. Status Solidi A 31, 469–475 (1975).Bonacina, L., Brevet, P.-F., Finazzi, M. & Celebrano, M. Harmonic generation at the nanoscale. J. Appl. Phys. 127, 230901 (2020).Gautier, R., Klingsporn, J. M., Van Duyne, R. P. & Poeppelmeier, K. R. Optical activity from racemates. Nat. Mater. 15, 591–592 (2016).Purschke, D. N. et al. Ultrafast photoconductivity and terahertz vibrational dynamics in double‐helix SnIP nanowires. Adv. Mater. 33, 2100978 (2021).Article 
CAS 

Google Scholar 
Mathur, N. et al. Atomically sharp internal interface in a chiral weyl semimetal nanowire. Nano Lett. 23, 2695–2702 (2023).Article 
PubMed 
CAS 

Google Scholar 
APEX3 Version 2014.11-0 (Bruker AXS, 2014).APEX4 Version 2021.4-0 (Bruker AXS, 2021).SAINT Version 8.40B (Bruker AXS, 2013).SADABS, Version 2016/2 (Bruker AXS, 2016).SHELXTL, Version 2019/1 (Bruker AXS, 2019).Dolomanov, O. V. et al. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).Article 
CAS 

Google Scholar 
Prince, E. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables (Springer Science & Business Media, 2004).Flack, H. On enantiomorph-polarity estimation. Acta Crystallogr. Sect. A 39, 876–881 (1983).Article 

Google Scholar 
Hooft, R. W., Straver, L. H. & Spek, A. L. Determination of absolute structure using Bayesian statistics on Bijvoet differences. J. Appl. Crystallogr. 41, 96–103 (2008).

Hot Topics

Related Articles