Rapid differentiation of cystic fibrosis-related bacteria via reagentless atmospheric pressure photoionisation mass spectrometry

Smyth, A. R. et al. European cystic fibrosis society standards of care: Best practice guidelines. J. Cyst. Fibros. 13(Suppl 1), S23-42. https://doi.org/10.1016/j.jcf.2014.03.010 (2014).Article 
MathSciNet 
PubMed 

Google Scholar 
Scott-Thomas, A. J. et al. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm. Med. 10, 56. https://doi.org/10.1186/1471-2466-10-56 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kos, R. et al. Targeted exhaled breath analysis for detection of Pseudomonas aeruginosa in cystic fibrosis patients. J. Cyst. Fibros. 21, e28–e34. https://doi.org/10.1016/j.jcf.2021.04.015 (2022).Article 
CAS 
PubMed 

Google Scholar 
Neerincx, A. H. et al. Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles. J. Breath Res. 10, 046014. https://doi.org/10.1088/1752-7155/10/4/046014 (2016).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Maher, S., Jjunju, F. P. & Taylor, S. Colloquium: 100 years of mass spectrometry: Perspectives and future trends. Rev. Mod. Phys. 87, 113 (2015).Article 
ADS 
CAS 

Google Scholar 
Lawal, O., Ahmed, W. M., Nijsen, T. M. E., Goodacre, R. & Fowler, S. J. Exhaled breath analysis: A review of “breath-taking” methods for off-line analysis. Metabolomics 13, 110. https://doi.org/10.1007/s11306-017-1241-8 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, X. R., Cassells, J. & Berna, A. Z. Stability control for breath analysis using GC-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1097–1098, 27–34. https://doi.org/10.1016/j.jchromb.2018.08.024 (2018).Article 
CAS 

Google Scholar 
Deng, C., Zhang, J., Yu, X., Zhang, W. & Zhang, X. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 810, 269–275. https://doi.org/10.1016/j.jchromb.2004.08.013 (2004).Article 
CAS 

Google Scholar 
Cervera, M. I., Beltran, J., Lopez, F. J. & Hernandez, F. Determination of volatile organic compounds in water by headspace solid-phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer. Anal. Chim. Acta 704, 87–97. https://doi.org/10.1016/j.aca.2011.08.012 (2011).Article 
CAS 
PubMed 

Google Scholar 
Barhdadi, S. et al. Development and validation of a HS/GC-MS method for the simultaneous analysis of diacetyl and acetylpropionyl in electronic cigarette refills. J. Pharm. Biomed. Anal. 142, 218–224. https://doi.org/10.1016/j.jpba.2017.04.050 (2017).Article 
CAS 
PubMed 

Google Scholar 
Bouza, M., Gonzalez-Soto, J., Pereiro, R., de Vicente, J. C. & Sanz-Medel, A. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients. J. Breath Res. 11, 016015. https://doi.org/10.1088/1752-7163/aa5e76 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Yuan, Z. C. et al. Solid-phase microextraction fiber in face mask for in vivo sampling and direct mass spectrometry analysis of exhaled breath aerosol. Anal. Chem. 92, 11543–11547. https://doi.org/10.1021/acs.analchem.0c02118 (2020).Article 
CAS 
PubMed 

Google Scholar 
Song, G. et al. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 67, 227–231. https://doi.org/10.1016/j.lungcan.2009.03.029 (2010).Article 
PubMed 

Google Scholar 
Bristow, R. L. et al. An automated micro solid phase extraction gas chromatography–mass spectrometry (μSPE-GC–MS) detection method for geosmin and 2-methylisoborneol in drinking water. Sci. Rep. 13, 1768. https://doi.org/10.1038/s41598-023-28543-x (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weber, R. et al. Volatile organic compound breath signatures of children with cystic fibrosis by real-time SESI-HRMS. ERJ Open Res. https://doi.org/10.1183/23120541.00171-2019 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Markar, S. R. et al. Breath volatile organic compound profiling of colorectal cancer using selected ion flow-tube mass spectrometry. Ann. Surg. 269, 903–910 (2019).Article 
PubMed 

Google Scholar 
Trefz, P. et al. Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry. Anal. Chem. 85, 10321–10329. https://doi.org/10.1021/ac402298v (2013).Article 
CAS 
PubMed 

Google Scholar 
Dryahina, K., Sovova, K., Nemec, A. & Spanel, P. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex. J. Breath Res. 10, 037102. https://doi.org/10.1088/1752-7155/10/3/037102 (2016).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lawal, O. et al. Volatile organic compound signature from co-culture of lung epithelial cell line with Pseudomonas aeruginosa. Analyst 143, 3148–3155. https://doi.org/10.1039/C8AN00759D (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lawal, O. et al. TD/GC–MS analysis of volatile markers emitted from mono- and co-cultures of Enterobacter cloacae and Pseudomonas aeruginosa in artificial sputum. Metabolomics 14, 66. https://doi.org/10.1007/s11306-018-1357-5 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rosenthal, K. et al. Volatile atmospheric pressure chemical ionisation mass spectrometry headspace analysis of E. coli and S. aureus. Anal. Methods 13, 5441–5449. https://doi.org/10.1039/D1AY01555A (2021).Article 
CAS 
PubMed 

Google Scholar 
Drees, C. et al. GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures. Appl. Microbiol. Biotechnol. 103, 9091–9101. https://doi.org/10.1007/s00253-019-10181-x (2019).Article 
CAS 
PubMed 

Google Scholar 
Hintzen, K. F. et al. Volatile organic compounds in headspace characterize isolated bacterial strains independent of growth medium or antibiotic sensitivity. PLoS One 19, e0297086 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berchtold, C., Bosilkovska, M., Daali, Y., Walder, B. & Zenobi, R. Real-time monitoring of exhaled drugs by mass spectrometry. Mass Spectrom. Rev. 33, 394–413. https://doi.org/10.1002/mas.21393 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Pleil, J. D., Stiegel, M. A. & Risby, T. H. Clinical breath analysis: Discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. J. Breath Res. 7, 017107. https://doi.org/10.1088/1752-7155/7/1/017107 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rattray, N. J., Hamrang, Z., Trivedi, D. K., Goodacre, R. & Fowler, S. J. Taking your breath away: Metabolomics breathes life in to personalized medicine. Trends Biotechnol. 32, 538–548. https://doi.org/10.1016/j.tibtech.2014.08.003 (2014).Article 
CAS 
PubMed 

Google Scholar 
Fenske, J. D. & Paulson, S. E. Human breath emissions of VOCs. J. Air Waste Manag. Assoc. 49, 594–598. https://doi.org/10.1080/10473289.1999.10463831 (1999).Article 
CAS 
PubMed 

Google Scholar 
Syslova, K. et al. Determination of cysteinyl leukotrienes in exhaled breath condensate: Method combining immunoseparation with LC-ESI-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879, 2220–2228. https://doi.org/10.1016/j.jchromb.2011.06.004 (2011).Article 
CAS 

Google Scholar 
Martinez-Lozano, P. & Fernandez de la Mora, J. Direct analysis of fatty acid vapors in breath by electrospray ionization and atmospheric pressure ionization-mass spectrometry. Anal. Chem. 80, 8210–8215. https://doi.org/10.1021/ac801185e (2008).Manolis, A. The diagnostic potential of breath analysis. Clin. Chem. 29, 5–15 (1983).Article 
CAS 
PubMed 

Google Scholar 
Amann, A. et al. Applications of breath gas analysis in medicine. Int. J. Mass Spectrom. 239, 227–233. https://doi.org/10.1016/j.ijms.2004.08.010 (2004).Article 
CAS 

Google Scholar 
Kim, K. H., Jahan, S. A. & Kabir, E. A review of breath analysis for diagnosis of human health. TrAC Trends Anal. Chem. 33, 1–8. https://doi.org/10.1016/j.trac.2011.09.013 (2012).Article 
CAS 

Google Scholar 
Righettoni, M. et al. Breath acetone monitoring by portable Si:WO3 gas sensors. Anal. Chim. Acta 738, 69–75. https://doi.org/10.1016/j.aca.2012.06.002 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deykin, A., Massaro, A. F., Drazen, J. M. & Israel, E. Exhaled nitric oxide as a diagnostic test for asthma: Online versus offline techniques and effect of flow rate. Am. J. Respir. Crit. Care Med. 165, 1597–1601. https://doi.org/10.1164/rccm.2201081 (2002).Article 
PubMed 

Google Scholar 
Reynolds, J. C. et al. Analysis of human breath samples using a modified thermal desorption: Gas chromatography electrospray ionization interface. J. Breath Res. 8, 037105. https://doi.org/10.1088/1752-7155/8/3/037105 (2014).Article 
CAS 
PubMed 

Google Scholar 
Takao, A., Shimoda, T., Kohno, S., Asai, S. & Harda, S. Correlation between alcohol-induced asthma and acetaldehyde dehydrogenase-2 genotype. J. Allergy Clin. Immunol. 101, 576–580. https://doi.org/10.1016/S0091-6749(98)70162-9 (1998).Article 
CAS 
PubMed 

Google Scholar 
Dent, A. G., Sutedja, T. G. & Zimmerman, P. V. Exhaled breath analysis for lung cancer. J. Thorac. Dis. 5(Suppl 5), S540-550. https://doi.org/10.3978/j.issn.2072-1439.2013.08.44 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Chan, H. P., Lewis, C. & Thomas, P. S. Exhaled breath analysis: Novel approach for early detection of lung cancer. Lung Cancer 63, 164–168. https://doi.org/10.1016/j.lungcan.2008.05.020 (2009).Article 
PubMed 

Google Scholar 
Santos, P. M., Del Nogal Sanchez, M., Pozas, A. P. C., Pavon, J. L. P. & Cordero, B. M. Determination of ketones and ethyl acetate-a preliminary study for the discrimination of patients with lung cancer. Anal. Bioanal. Chem. 409, 5689–5696. https://doi.org/10.1007/s00216-017-0508-2 (2017).Dang, M., Liu, R., Dong, F., Liu, B. & Hou, K. Vacuum ultraviolet photoionization on-line mass spectrometry: Instrumentation developments and applications. TrAC Trends Anal. Chem. 149, 116542. https://doi.org/10.1016/j.trac.2022.116542 (2022).Article 
CAS 

Google Scholar 
Jorabchi, K., Hanold, K. & Syage, J. Ambient analysis by thermal desorption atmospheric pressure photoionization. Anal. Bioanal. Chem. 405, 7011–7018. https://doi.org/10.1007/s00216-012-6536-z (2013).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. High-pressure photon ionization source for TOFMS and its application for online breath analysis. Anal. Chem. 88, 9047–9055. https://doi.org/10.1021/acs.analchem.6b01707 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhang, P. et al. A feasibility study of Covid-19 detection using breath analysis by high-pressure photon ionization time-of-flight mass spectrometry. J. Breath Res. 16, 046009. https://doi.org/10.1088/1752-7163/ac8ea1 (2022).Article 
ADS 
CAS 

Google Scholar 
Zhou, W. et al. Modification of an atmospheric pressure photoionization source for online analysis of exhaled breath coupled with quadrupole time-of-flight mass spectrometry. Anal. Bioanal. Chem. 412, 3663–3671. https://doi.org/10.1007/s00216-020-02602-y (2020).Article 
CAS 
PubMed 

Google Scholar 
Drabińska, N. et al. A literature survey of all volatiles from healthy human breath and bodily fluids: The human volatilome. J. Breath Res. 15, 034001. https://doi.org/10.1088/1752-7163/abf1d0 (2021).Article 

Google Scholar 
Boots, A. W. et al. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. J. Breath Res. 8, 027106. https://doi.org/10.1088/1752-7155/8/2/027106 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Filipiak, W. et al. Volatile organic compounds (VOCs) released by pathogenic microorganisms in vitro: Potential breath biomarkers for early-stage diagnosis of disease. Volatile Biomark. https://doi.org/10.1016/B978-0-44-462613-4.00023-4 (2013).Article 

Google Scholar 
Kaeslin, J. et al. Differentiation of cystic fibrosis-related pathogens by volatile organic compound analysis with secondary electrospray ionization mass spectrometry. Metabolites. https://doi.org/10.3390/metabo11110773 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Bregy, L. et al. Differentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization—Mass spectrometry. Sci. Rep. 5, 15163. https://doi.org/10.1038/srep15163 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bookmeyer, C., Soltwisch, J., Rohling, U. & Dreisewerd, K. Low-Pressure photoionization in a dual-ion funnel injector coupled to an orbitrap mass spectrometer for direct analysis of human breath and head-space sampled coffee roasts. Chempluschem 85, 1559–1563. https://doi.org/10.1002/cplu.202000462 (2020).Article 
CAS 
PubMed 

Google Scholar 
Raffaelli, A. & Saba, A. Atmospheric pressure photoionization mass spectrometry. Mass Spectrom. Rev. 22, 318–331. https://doi.org/10.1002/mas.10060 (2003).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Robb, D. B. & Blades, M. W. State-of-the-art in atmospheric pressure photoionization for LC/MS. Anal. Chim. Acta 627, 34–49. https://doi.org/10.1016/j.aca.2008.05.077 (2008).Article 
CAS 
PubMed 

Google Scholar 
Kauppila, T. J., Syage, J. A. & Benter, T. Recent developments in atmospheric pressure photoionization-mass spectrometry. Mass Spectrom. Rev. 36, 423–449. https://doi.org/10.1002/mas.21477 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Iyer, K. et al. Ion manipulation in open air using 3D-printed electrodes. J. Am. Soc. Mass Spectrom. 30, 2584–2593. https://doi.org/10.1007/s13361-019-02307-2 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kauppila, T. J., Bruins, A. P. & Kostiainen, R. Effect of the solvent flow rate on the ionization efficiency in atmospheric pressure photoionization-mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 1399–1407. https://doi.org/10.1016/j.jasms.2005.03.051 (2005).Article 
ADS 
CAS 

Google Scholar 
Staff, R. A. E. S. H. The PID Handbook: Theory and Applications of Direct-Reading Photoionization Detectors (RAE Systems by Honeywell, 2014).Di Natale, C., Paolesse, R., Martinelli, E. & Capuano, R. Solid-state gas sensors for breath analysis: A review. Anal. Chim. Acta 824, 1–17. https://doi.org/10.1016/j.aca.2014.03.014 (2014).Article 
CAS 
PubMed 

Google Scholar 
Diskin, A. M., Spanel, P. & Smith, D. Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days. Physiol. Meas. 24, 107–119. https://doi.org/10.1088/0967-3334/24/1/308 (2003).Article 
PubMed 

Google Scholar 
Van den Velde, S., Nevens, F., Van Hee, P., van Steenberghe, D. & Quirynen, M. GC-MS analysis of breath odor compounds in liver patients. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 875, 344–348. https://doi.org/10.1016/j.jchromb.2008.08.031 (2008).Article 
CAS 

Google Scholar 
Khatoon, Z. et al. Ethyl acetate chemical sensor as lung cancer biomarker detection based on doped nano-SnO2 synthesized by sol–gel process. IEEE Sens. J. 20, 12504–12511. https://doi.org/10.1109/JSEN.2020.3001285 (2020).Article 
ADS 
CAS 

Google Scholar 
Zhou, Y. et al. Emergency diagnosis made easy: Matrix removal and analyte enrichment from raw saliva using paper-arrow mass spectrometry. Analyst 148, 5366–5379. https://doi.org/10.1039/D3AN00850A (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sham, T.-T., Badu-Tawiah, A. K., McWilliam, S. J. & Maher, S. Assessment of creatinine concentration in whole blood spheroids using paper spray ionization–tandem mass spectrometry. Sci. Rep. 12, 14308. https://doi.org/10.1038/s41598-022-18365-8 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smith, B. L. et al. Ambient ion focusing for paper spray ionisation. Int. J. Mass Spectrom. 471, 116737. https://doi.org/10.1016/j.ijms.2021.116737 (2022).Article 
CAS 

Google Scholar 
Sarih, N. M. et al. Accelerated nucleophilic substitution reactions of dansyl chloride with aniline under ambient conditions via dual-tip reactive paper spray. Sci. Rep. 10, 21504. https://doi.org/10.1038/s41598-020-78133-4 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jjunju, F. P. M. et al. Analysis of non-conjugated steroids in water using paper spray mass spectrometry. Sci. Rep. 10, 10698. https://doi.org/10.1038/s41598-020-67484-7 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maher, S. et al. Direct analysis and quantification of metaldehyde in water using reactive paper spray mass spectrometry. Sci. Rep. 6, 35643. https://doi.org/10.1038/srep35643 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smith, B. L. et al. In 2017 IEEE SENSORS. 1–3.Smith, B. L. et al. Rapid scotch whisky analysis and authentication using desorption atmospheric pressure chemical ionisation mass spectrometry. Sci. Rep. 9, 7994. https://doi.org/10.1038/s41598-019-44456-0 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Charoensumran, P. et al. Rapid geographical indication of peppercorn seeds using corona discharge mass spectrometry. Sci. Rep. 11, 16089. https://doi.org/10.1038/s41598-021-95462-0 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles