The metabolic role of vitamin D in children’s neurodevelopment: a network study

Durkin, M. S. Increasing prevalence of developmental disabilities among children in the US: A sign of progress?. Pediatrics 144, 4 (2019).Article 

Google Scholar 
Gidziela, A. et al. A meta-analysis of genetic effects associated with neurodevelopmental disorders and co-occurring conditions. Nat. Hum. Behav. 7, 642–656 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Parenti, I., Rabaneda, L. G., Schoen, H. & Novarino, G. Neurodevelopmental disorders: From genetics to functional pathways. Trends Neurosci. 43, 608–621 (2020).Article 
CAS 
PubMed 

Google Scholar 
Data, C. statistics on autism spectrum disorder|CDC. Centers Dis. Control Prevent. 2020, 4781–4792 (2020).
Google Scholar 
Baxter, A. J. et al. The epidemiology and global burden of autism spectrum disorders. Psychol. Med. 45, 601–613 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zeidan, J. et al. Global prevalence of autism: A systematic review update. Autism Res. 15, 778–790 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Bhat, S., Acharya, U. R., Adeli, H., Bairy, G. M. & Adeli, A. Autism: Cause factors, early diagnosis and therapies. Rev. Neurosci. 25, 841–850 (2014).Article 
PubMed 

Google Scholar 
Hirota, T. & King, B. H. Autism spectrum disorder: A review. JAMA 329, 157–168 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lord, C. et al. Autism spectrum disorder. Nat. Rev. Dis. Prim. 6, 1–23 (2020).
Google Scholar 
Fong, J., Lewis, J., Lam, M. & Kesavan, K. Developmental outcomes after opioid exposure in the fetus and neonate. NeoReviews 25, e325–e337 (2024).Article 
PubMed 

Google Scholar 
de Matos Reis, Á. E. et al. Maternal nutrition and its effects on fetal neurodevelopment. Nutrition 2024, 112483 (2024).Article 

Google Scholar 
Jembere, F. & Dewey, D. Prenatal Vitamin B12 and children’s brain development and cognitive, language and motor outcomes: A scoping review. Children 11, 558 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Miclea, D., Peca, L., Cuzmici, Z. & Pop, I. V. Genetic testing in patients with global developmental delay/intellectual disabilities. A review. Clujul Med. 88, 288 (2015).PubMed 
PubMed Central 

Google Scholar 
Herman, G. E. et al. Genetic testing in autism: How much is enough?. Genet. Med. 9, 268–274 (2007).Article 
PubMed 

Google Scholar 
Miles, J. H. Autism spectrum disorders—a genetics review. Genet. Med. 13, 278–294 (2011).Article 
PubMed 

Google Scholar 
Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Carlsson, T., Molander, F., Taylor, M. J., Jonsson, U. & Bölte, S. Early environmental risk factors for neurodevelopmental disorders—a systematic review of twin and sibling studies. Dev. Psychopathol. 33, 1448–1495 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Volk, H. & Sheridan, M. A. Investigating the Impact of the Environment on Neurodevelopmental Disorder 1–2 (Springer, 2020).Book 

Google Scholar 
Modabbernia, A., Velthorst, E. & Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism 8, 1–16 (2017).Article 

Google Scholar 
Eyles, D. W. Vitamin D: Brain and behavior. J. Bone Miner. Res. Plus 5, e10419 (2021).CAS 

Google Scholar 
Aagaard, K. et al. High-dose vitamin D3 supplementation in pregnancy and risk of neurodevelopmental disorders in the children at age 10: A randomized clinical trial. Am. J. Clin. Nutr. 119, 362–370 (2024).Article 
CAS 
PubMed 

Google Scholar 
Yasumitsu-Lovell, K. et al. Vitamin D deficiency associated with neurodevelopmental problems in 2-year-old Japanese boys. Acta Paediatr. 113, 119–126 (2024).Article 
CAS 
PubMed 

Google Scholar 
Cannell, J. J. Vitamin D and autism, what’s new?. Rev. Endocrine Metabol. Disord. 18, 183–193 (2017).Article 
CAS 

Google Scholar 
Guiducci, L. et al. Vitamin D status in children with autism spectrum disorders: Determinants and effects of the response to probiotic supplementation. Metabolites 12, 611 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, J. et al. Research progress on the role of vitamin D in autism spectrum disorder. Front. Behav. Neurosci. 16, 106 (2022).
Google Scholar 
Kočovská, E., Gaughran, F., Krivoy, A. & Meier, U.-C. Vitamin-D deficiency as a potential environmental risk factor in multiple sclerosis, schizophrenia, and autism. Front. Psychiatry 8, 239405 (2017).Article 

Google Scholar 
Cui, X. & Eyles, D. W. Vitamin D and the central nervous system: Causative and preventative mechanisms in brain disorders. Nutrients 14, 4353 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ye, X., Zhou, Q., Ren, P., Xiang, W. & Xiao, L. The synaptic and circuit functions of vitamin D in neurodevelopment disorders. Neuropsychiatr. Dis. Treatment 2023, 1515–1530 (2023).Article 

Google Scholar 
Arastoo, A. A. et al. Evaluation of serum 25-Hydroxy vitamin D levels in children with autism Spectrum disorder. Italian J. Pediatr. 44, 1–5 (2018).Article 

Google Scholar 
Dong, H., Wang, B., Li, H., Shan, L. & Jia, F. Correlation between serum 25-hydroxyvitamin D level and core symptoms of autism spectrum disorder in children. Chin. J. Pediatr. 55, 916–919 (2017).CAS 

Google Scholar 
Guo, M. et al. Vitamin A and vitamin D deficiencies exacerbate symptoms in children with autism spectrum disorders. Nutr. Neurosci. 22, 637–647 (2019).Article 
CAS 
PubMed 

Google Scholar 
Grant, W. B. & Cannell, J. J. Autism prevalence in the United States with respect to solar UV-B doses: An ecological study. Dermato-endocrinology 5, 159–164 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, J., Xin, K., Wei, J., Zhang, K. & Xiao, H. Lower maternal serum 25 (OH) D in first trimester associated with higher autism risk in Chinese offspring. J. Psychosom. Res. 89, 98–101 (2016).Article 
PubMed 

Google Scholar 
Vinkhuyzen, A. A. et al. Gestational vitamin D deficiency and autism-related traits: The Generation R Study. Mol. Psychiatry 23, 240–246 (2018).Article 
CAS 
PubMed 

Google Scholar 
Garcia-Serna, A. M. & Morales, E. Neurodevelopmental effects of prenatal vitamin D in humans: Systematic review and meta-analysis. Mol. Psychiatry 25, 2468–2481 (2020).Article 
CAS 
PubMed 

Google Scholar 
Stubbs, G., Henley, K. & Green, J. Autism: Will vitamin D supplementation during pregnancy and early childhood reduce the recurrence rate of autism in newborn siblings?. Med. Hypotheses 88, 74–78 (2016).Article 
CAS 
PubMed 

Google Scholar 
Feng, J. et al. Clinical improvement following vitamin D3 supplementation in autism spectrum disorder. Nutr. Neurosci. 20, 284–290 (2017).Article 
CAS 
PubMed 

Google Scholar 
Jia, F. et al. Core symptoms of autism improved after vitamin D supplementation. Pediatrics 135, e196–e198 (2015).Article 
PubMed 

Google Scholar 
Saad, K. et al. Retraction: Randomized Controlled Trial of Vitamin D Supplementation In Children with Autism Spectrum Disorder (Wiley Online Library, 2019).
Google Scholar 
Keute, M., Demirezen, M., Graf, A., Mueller, N. G. & Zaehle, T. No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS). Sci. Rep. 9, 11452 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Bikle, D. D. Vitamin D: Production, metabolism and mechanisms of action. Endotext 2021, 56 (2021).
Google Scholar 
Voltas, N. et al. Effect of vitamin D status during pregnancy on infant neurodevelopment: The ECLIPSES study. Nutrients 12, 3196 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ali, A., Cui, X. & Eyles, D. Developmental vitamin D deficiency and autism: Putative pathogenic mechanisms. J. Steroid Biochem. Mol. Biol. 175, 108–118 (2018).Article 
CAS 
PubMed 

Google Scholar 
Patrick, R. P. & Ames, B. N. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J. 28, 2398–2413 (2014).Article 
CAS 
PubMed 

Google Scholar 
Pertile, R. A., Cui, X., Hammond, L. & Eyles, D. W. Vitamin D regulation of GDNF/Ret signaling in dopaminergic neurons. FASEB J. 32, 819–828 (2018).Article 
CAS 
PubMed 

Google Scholar 
Chambers, E. S. & Hawrylowicz, C. M. The impact of vitamin D on regulatory T cells. Curr. Allergy Asthma Rep. 11, 29–36 (2011).Article 
CAS 
PubMed 

Google Scholar 
Nakamura, K. et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch. Gener. Psychiatry 67, 59–68 (2010).Article 
CAS 

Google Scholar 
DeLuca, H. F. Vitamin D: Historical overview. Vitamins Hormones 100, 1–20 (2016).Article 
CAS 
PubMed 

Google Scholar 
El-Sharkawy, A. & Malki, A. Vitamin D signaling in inflammation and cancer: Molecular mechanisms and therapeutic implications. Molecules 25, 3219 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Litonjua, A. A. et al. The Vitamin D Antenatal Asthma Reduction Trial (VDAART): Rationale, design, and methods of a randomized, controlled trial of vitamin D supplementation in pregnancy for the primary prevention of asthma and allergies in children. Contempor. Clin. Trials 38, 37–50 (2014).Article 

Google Scholar 
Singh, A., Yeh, C. J. & Blanchard, S. B. Ages and stages questionnaire: A global screening scale. Boletín Médico Del Hospital Infantil de México (Engl. Ed.) 74, 5–12 (2017).
Google Scholar 
Squires, J., Bricker, D. D. & Twombly, E. Ages & Stages Questionnaires (Paul H. Brookes, 2009).Hardy, S., Haisley, L., Manning, C. & Fein, D. Can screening with the Ages and Stages Questionnaire detect autism?. J. Develop. Behav. Pediatr. 36, 536 (2015).Article 

Google Scholar 
Kelly, R. S. et al. Metabolomics and communication skills development in children; evidence from the ages and stages questionnaire. Metabolites 9, 42 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kuijjer, M. L., Tung, M. G., Yuan, G., Quackenbush, J. & Glass, K. Estimating sample-specific regulatory networks. Iscience 14, 226–240 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z., Ding, R. & Wang, J. The association between vitamin D status and autism spectrum disorder (ASD): A systematic review and meta-analysis. Nutrients 13, 86 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Wieder, C., Lai, R. P. & Ebbels, T. M. Single sample pathway analysis in metabolomics: Performance evaluation and application. BMC Bioinform. 23, 481 (2022).Article 
CAS 

Google Scholar 
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).Article 
CAS 
PubMed 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550 (2005).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, H. et al. The metabolic factor kynurenic acid of kynurenine pathway predicts major depressive disorder. Front. Psychiatry 9, 552 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Fazio, F. et al. Xanthurenic acid activates mGlu2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia. Sci. Rep. 5, 17799 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Murakami, Y., Imamura, Y., Saito, K., Sakai, D. & Motoyama, J. Altered kynurenine pathway metabolites in a mouse model of human attention-deficit hyperactivity/autism spectrum disorders: A potential new biological diagnostic marker. Sci. Rep. 9, 13182 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Evangelisti, M. et al. Changes in serum levels of kynurenine metabolites in paediatric patients affected by ADHD. Eur. Child Adolesc. Psychiatry 26, 1433–1441 (2017).Article 
PubMed 

Google Scholar 
Roth, W., Zadeh, K., Vekariya, R., Ge, Y. & Mohamadzadeh, M. Tryptophan metabolism and gut-brain homeostasis. Int. J. Mol. Sci. 22, 2973 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsuji, A. et al. The tryptophan and kynurenine pathway involved in the development of immune-related diseases. Int. J. Mol. Sci. 24, 5742 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boccuto, L. et al. Decreased tryptophan metabolism in patients with autism spectrum disorders. Mol. Autism 4, 1–10 (2013).Article 

Google Scholar 
Kałużna-Czaplińska, J., Jóźwik-Pruska, J., Chirumbolo, S. & Bjørklund, G. Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metabol. Brain Dis. 32, 1585–1593 (2017).Article 

Google Scholar 
Schwartz, C. E. Aberrant tryptophan metabolism: The unifying biochemical basis for autism spectrum disorders?. Biomark. Med. 8, 313–315 (2014).Article 
CAS 
PubMed 

Google Scholar 
Murru, E. et al. Conjugated linoleic acid and brain metabolism: A possible anti-neuroinflammatory role mediated by PPARα activation. Front. Pharmacol. 11, 587140 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Usui, N. et al. VLDL-specific increases of fatty acids in autism spectrum disorder correlate with social interaction. EBioMedicine 58, 102917 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
El-Ansary, A. K., Ben-Bacha, A. G. & Al-Ayahdi, L. Y. Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis. 10, 1–8 (2011).
Google Scholar 
Mitchell, E. A., Aman, M. G., Turbott, S. H. & Manku, M. Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin. Pediatr. 26, 406–411 (1987).Article 
CAS 

Google Scholar 
Stevens, L. J. et al. Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 62, 761–768 (1995).Article 
CAS 
PubMed 

Google Scholar 
Baker, S. M. A biochemical approach to the problem of dyslexia. J. Learn. Disabil. 18, 581–584 (1985).Article 
CAS 
PubMed 

Google Scholar 
Rüthrich, H.-L., Hoffmann, P., Matthies, H. & Förster, W. Perinatal linoleate deprivation impairs learning and memory in adult rats. Behav. Neural Biol. 40, 205–212 (1984).Article 
PubMed 

Google Scholar 
Yin, K. & Agrawal, D. K. Vitamin D and inflammatory diseases. J. Inflamm. Res. 2014, 69–87 (2014).
Google Scholar 
Patrick, R. P. & Ames, B. N. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 29, 2207–2222 (2015).Article 
CAS 
PubMed 

Google Scholar 
Kanova, M. & Kohout, P. Serotonin—its synthesis and roles in the healthy and the critically ill. Int. J. Mol. Sci. 22, 4837 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Clark-Taylor, T. & Clark-Taylor, B. E. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial β-oxidation by long chain acyl-CoA dehydrogenase. Med. Hypotheses 62, 970–975 (2004).Article 
CAS 
PubMed 

Google Scholar 
Esposito, C. M., Buoli, M., Ciappolino, V., Agostoni, C. & Brambilla, P. The role of cholesterol and fatty acids in the etiology and diagnosis of autism spectrum disorders. Int. J. Mol. Sci. 22, 3550 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mulligan, M. L., Felton, S. K., Riek, A. E. & Bernal-Mizrachi, C. Implications of vitamin D deficiency in pregnancy and lactation. Am. J. Obstetr. Gynecol. 202, 429 (2010).Article 

Google Scholar 
Naeem, Z. Vitamin d deficiency-an ignored epidemic. Int. J. Health Sci. 4, 5 (2010).
Google Scholar 
Al-Beltagi, M. Autism medical comorbidities. World J. Clin. Pediatr. 10, 15 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Xu, G. et al. Association of food allergy and other allergic conditions with autism spectrum disorder in children. JAMA Netw. Open 1, e180279–e180279 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ringe, J. D. & Kipshoven, C. Vitamin D-insufficiency: An estimate of the situation in Germany. Dermato-endocrinology 4, 72–80 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smeland, O. B., Meisingset, T. W., Borges, K. & Sonnewald, U. Chronic acetyl-L-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem. Int. 61, 100–107 (2012).Article 
CAS 
PubMed 

Google Scholar 
Ferreira, G. C. & McKenna, M. C. L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem. Res. 42, 1661–1675 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Esmaiel, N. N. et al. The potential impact of COMT gene variants on dopamine regulation and phenotypic traits of ASD patients. Behav. Brain Res. 378, 112272 (2020).Article 
CAS 
PubMed 

Google Scholar 
Comhair, S. A. et al. Metabolomic endotype of asthma. J. Immunol. 195, 643–650 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ghosh, N. et al. Metabolomic signatures of asthma-COPD overlap (ACO) are different from asthma and COPD. Metabolomics 15, 1–11 (2019).Article 

Google Scholar 
Muller, C. L., Anacker, A. M. & Veenstra-VanderWeele, J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 321, 24–41 (2016).Article 
CAS 
PubMed 

Google Scholar 
Motlagh, A. J., Davoodvandi, A. & Saeieh, S. E. Association between vitamin D level in mother’s serum and the level of vitamin D in the serum of pre-term infants. BMC Pediatr. 23, 97 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rabbani, S. et al. Correlation between maternal and neonatal blood Vitamin D level: Study from Pakistan. Maternal Child Nutr. 17, e13028 (2021).Article 

Google Scholar 
Mansur, J. L., Oliveri, B., Giacoia, E., Fusaro, D. & Costanzo, P. R. Vitamin D: Before, during and after pregnancy: Effect on neonates and children. Nutrients 14, 1900 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Pirdehghan, A., Vakili, M., Dehghan, R. & Zare, F. High prevalence of vitamin D deficiency and adverse pregnancy outcomes in Yazd, a central province of Iran. J. Reprod. Infertil. 17, 34 (2016).PubMed 
PubMed Central 

Google Scholar 
Zhang, Q. et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clin. Nutr. 38, 1921–1926 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chernikova, M. A. et al. The brain-gut-microbiome system: Pathways and implications for autism spectrum disorder. Nutrients 13, 4497 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Murakami, Y. et al. Maternal inflammation with elevated kynurenine metabolites is related to the risk of abnormal brain development and behavioral changes in autism spectrum disorder. Cells 12, 1087 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gevi, F., Zolla, L., Gabriele, S. & Persico, A. M. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol. Autism 7, 1–11 (2016).Article 

Google Scholar 
Lim, C. K. et al. Altered kynurenine pathway metabolism in autism: Implication for immune-induced glutamatergic activity. Autism Res. 9, 621–631 (2016).Article 
PubMed 

Google Scholar 
Austin, D. W., Busija, L. & Brown, C. M. Observable essential fatty acid deficiency markers and autism spectrum disorder. Breastfeeding Rev. 22, 21–26 (2014).
Google Scholar 
Brown, C. M. & Austin, D. W. Autistic disorder and phospholipids: A review. Prostaglandins Leukotrienes Essential Fatty Acids 84, 25–30 (2011).Article 
CAS 
PubMed 

Google Scholar 
Tamiji, J. & Crawford, D. A. The neurobiology of lipid metabolism in autism spectrum disorders. Neurosignals 18, 98–112 (2011).Article 

Google Scholar 
Lesch, K.-P. & Waider, J. Serotonin in the modulation of neural plasticity and networks: Implications for neurodevelopmental disorders. Neuron 76, 175–191 (2012).Article 
CAS 
PubMed 

Google Scholar 
Ucuz, I. I., Dursun, O. B. & Aydin, N. The effects of vitamin D3 on brain development and autism. Bull. Clin. Psychopharmacol. 25, 302–311 (2015).Article 
CAS 

Google Scholar 
Baron-Cohen, S. The extreme male brain theory of autism. Trends Cogn. Sci. 6, 248–254 (2002).Article 
PubMed 

Google Scholar 
Baron-Cohen, S., Knickmeyer, R. C. & Belmonte, M. K. Sex differences in the brain: Implications for explaining autism. Science 310, 819–823 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Knickmeyer, R. C. & Baron-Cohen, S. Topical review: Fetal testosterone and sex differences in typical social development and in autism. J. Child Neurol. 21, 825–845 (2006).Article 
PubMed 

Google Scholar 
Olmos-Ortiz, A. et al. Evidence of sexual dimorphism in placental vitamin D metabolism: Testosterone inhibits calcitriol-dependent cathelicidin expression. J. Steroid Biochem. Mol. Biology 163, 173–182 (2016).Article 
CAS 

Google Scholar 
Kirsch, A. C. et al. Association of comorbid mood and anxiety disorders with autism spectrum disorder. JAMA Pediatr. 174, 63–70 (2020).Article 
PubMed 

Google Scholar 
Angold, A., Erkanli, A., Silberg, J., Eaves, L. & Costello, E. J. Depression scale scores in 8–17-year-olds: Effects of age and gender. J. Child Psychol. Psychiatry 43, 1052–1063 (2002).Article 
PubMed 

Google Scholar 
Rai, D. et al. Association of autistic traits with depression from childhood to age 18 years. JAMA Psychiatry 75, 835–843 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bejerot, S. An autistic dimension: A proposed subtype of obsessive-compulsive disorder. Autism 11, 101–110 (2007).Article 
PubMed 

Google Scholar 
Meier, S. M. et al. Obsessive-compulsive disorder and autism spectrum disorders: Longitudinal and offspring risk. PloS one 10, e0141703 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Cortesi, F., Giannotti, F., Ivanenko, A. & Johnson, K. Sleep in children with autistic spectrum disorder. Sleep Med. 11, 659–664 (2010).Article 
PubMed 

Google Scholar 
McElhanon, B. O., McCracken, C., Karpen, S. & Sharp, W. G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics 133, 872–883 (2014).Article 
PubMed 

Google Scholar 
Molloy, C. A. & Manning-Courtney, P. Prevalence of chronic gastrointestinal symptoms in children with autism and autistic spectrum disorders. Autism 7, 165–171 (2003).Article 
PubMed 

Google Scholar 
Lasheras, I., Real-López, M. & Santabárbara, J. Prevalence of gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Anal. Pediatr. (Engl. Ed.) 99, 102–110 (2023).Article 

Google Scholar 
Li, H. et al. Association of food hypersensitivity in children with the risk of autism spectrum disorder: A meta-analysis. Eur. J. Pediatr. 180, 999–1008 (2021).Article 
PubMed 

Google Scholar 
Gong, T. et al. Understanding the relationship between asthma and autism spectrum disorder: A population-based family and twin study. Psychol. Med. 53, 3096–3104 (2023).Article 
PubMed 

Google Scholar 
Zerbo, O. et al. Immune mediated conditions in autism spectrum disorders. Brain Behav. Immunity 46, 232–236 (2015).Article 
CAS 

Google Scholar 
Nau, F. Jr. et al. Serotonin 5-HT2 receptor activation prevents allergic asthma in a mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L191–L198 (2015).Article 
CAS 
PubMed 

Google Scholar 
Mendez-Enriquez, E. et al. Mast cell-derived serotonin enhances methacholine-induced airway hyperresponsiveness in house dust mite-induced experimental asthma. Allergy 76, 2057–2069 (2021).Article 
CAS 
PubMed 

Google Scholar 
McCarty, P. & Frye, R. E. Early detection and diagnosis of autism spectrum disorder: Why is it so difficult? In Seminars in Pediatric Neurology, vol. 35 100831 (Elsevier, 2020).McCune, Y. D., Richardson, M. M. & Powell, J. A. Psychosocial health issues in pediatric practices: Parents’ knowledge and concerns. Pediatrics 74, 183–190 (1984).Article 
CAS 
PubMed 

Google Scholar 
Ertem, I. et al. Mothers’ knowledge of young child development in a developing country. Child Care Health Dev. 33, 728–737 (2007).Article 
CAS 
PubMed 

Google Scholar 
Daley, T. C. From symptom recognition to diagnosis: Children with autism in urban India. Soc. Sci. Med. 58, 1323–1335 (2004).Article 
PubMed 

Google Scholar 
Veldhuizen, S., Bedard, C., Rodriguez, C. & Cairney, J. Psychological distress and parent reporting on child health: The case of developmental delay. Res. Dev. Disabil. 63, 11–17 (2017).Article 
PubMed 

Google Scholar 
Eyles, D., Brown, J., Mackay-Sim, A., McGrath, J. & Feron, F. Vitamin D3 and brain development. Neuroscience 118, 641–653 (2003).Article 
CAS 
PubMed 

Google Scholar 
Cui, X., McGrath, J. J., Burne, T. H., Mackay-Sim, A. & Eyles, D. W. Maternal vitamin D depletion alters neurogenesis in the developing rat brain. Int. J. Dev. Neurosci. 25, 227–232 (2007).Article 
CAS 
PubMed 

Google Scholar 
Ko, P., Burkert, R., McGrath, J. & Eyles, D. Maternal vitamin D3 deprivation and the regulation of apoptosis and cell cycle during rat brain development. Dev. Brain Res. 153, 61–68 (2004).Article 
CAS 

Google Scholar 
Marini, F. et al. Effect of 1α, 25-dihydroxyvitamin D3 in embryonic hippocampal cells. Hippocampus 20, 696–705 (2010).Article 
CAS 
PubMed 

Google Scholar 
Brown, J., Bianco, J. I., McGrath, J. J. & Eyles, D. W. 1, 25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci. Lett. 343, 139–143 (2003).Article 
CAS 
PubMed 

Google Scholar 
De Abreu, D. A. F. et al. Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behav. Brain Res. 208, 603–608 (2010).Article 

Google Scholar 
Gao, K., Mu, C.-L., Farzi, A. & Zhu, W.-Y. Tryptophan metabolism: A link between the gut microbiota and brain. Adv. Nutr. 11, 709–723 (2020).Article 
PubMed 

Google Scholar 
Ogbu, D., Xia, E. & Sun, J. Gut instincts: Vitamin D/vitamin D receptor and microbiome in neurodevelopment disorders. Open Biol. 10, 200063 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tamang, M. K. et al. Developmental vitamin D-deficiency produces autism-relevant behaviours and gut-health associated alterations in a rat model. Transl. Psychiatry 13, 204 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qiu, S., Qiu, Y., Li, Y. & Cong, X. Genetics of autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses. Transl. Psychiatry 12, 249 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Yoon, S. H., Choi, J., Lee, W. J. & Do, J. T. Genetic and epigenetic etiology underlying autism spectrum disorder. J. Clin. Med. 9, 966 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rylaarsdam, L. & Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell. Neurosci. 13, 385 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schmidt, R. J. et al. Selected vitamin D metabolic gene variants and risk for autism spectrum disorder in the CHARGE Study. Early Hum. Dev. 91, 483–489 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, J. et al. Research progress on the role of vitamin D in autism spectrum disorder. Front. Behav. Neurosci. 16, 859151 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cannell, J. J. & Grant, W. B. What is the role of vitamin D in autism?. Dermato-endocrinology 5, 199–204 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Batushansky, A., Toubiana, D. & Fait, A. Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: A case study in cancer cell metabolism. BioMed Res. Int. 2016, 9 (2016).Article 

Google Scholar 
Perez-De-Souza, L., Alseekh, S., Brotman, Y. & Fernie, A. R. Network-based strategies in metabolomics data analysis and interpretation: From molecular networking to biological interpretation. Expert Rev. Proteom. 17, 243–255 (2020).Article 
CAS 

Google Scholar 
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Fang, Z., Liu, X. & Peltz, G. GSEApy: A comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics 39, btac757 (2023).Article 
CAS 
PubMed 

Google Scholar 
Cock, P. J. et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles