Synergistic convergence of materials and enzymes for biosensing and self-sustaining energy devices towards on-body health monitoring

Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Nasiri, S. & Khosravani, M. R. Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuators A: Phys. 312, 112105 (2020).Article 
CAS 

Google Scholar 
Kim, J. et al. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 51, 41–45 (2015).Article 
CAS 

Google Scholar 
Wang, Y. et al. Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. npj Flex. Electron. 2, 6 (2018).Article 

Google Scholar 
Parrilla, M., Vanhooydonck, A., Watts, R. & De Wael, K. Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids. Biosens. Bioelectron. 197, 113764 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kim, H. et al. A Wearable Wrist Band-Type System for Multimodal Biometrics Integrated with Multispectral Skin Photomatrix and Electrocardiogram Sensors. Sensors 18, https://doi.org/10.3390/s18082738 (2018).Pal, A. et al. Early detection and monitoring of chronic wounds using low-cost, omniphobic paper-based smart bandages. Biosens. Bioelectron. 117, 696–705 (2018).Article 
CAS 
PubMed 

Google Scholar 
Guinovart, T., Valdés-Ramírez, G., Windmiller, J. R., Andrade, F. J. & Wang, J. Bandage-Based Wearable Potentiometric Sensor for Monitoring Wound pH. Electroanalysis 26, 1345–1353 (2014).Article 
CAS 

Google Scholar 
Gonçalves, C., Ferreira da Silva, A., Gomes, J. & Simoes, R. Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control Elements. Inventions 3, https://doi.org/10.3390/inventions3010014 (2018).Islam, G. M. N., Ali, A. & Collie, S. Textile sensors for wearable applications: a comprehensive review. Cellulose 27, 6103–6131 (2020).Article 

Google Scholar 
Cheraghi Bidsorkhi, H. et al. Wearable Graphene-based smart face mask for Real-Time human respiration monitoring. Mater. Des. 230, 111970 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jeerapan, I., Sangsudcha, W. & Phokhonwong, P. Wearable energy devices on mask-based printed electrodes for self-powered glucose biosensors. Sens. Bio-Sens. Res. 38, 100525 (2022).Article 

Google Scholar 
Sempionatto, J. R. et al. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosens. Bioelectron. 137, 161–170 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sempionatto, J. R. et al. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab a Chip 17, 1834–1842 (2017).Article 
CAS 

Google Scholar 
Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Seo, H. et al. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem. Rev. 123, 11488–11558 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moonla, C. et al. Review—Lab-in-a-Mouth and Advanced Point-of-Care Sensing Systems: Detecting Bioinformation from the Oral Cavity and Saliva. ECS Sens. 1, 021603 (2022).Article 
CAS 

Google Scholar 
Arakawa, T. et al. A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for In Vivo Salivary Glucose Measurement. Anal. Chem. 92, 12201–12207 (2020).Article 
CAS 
PubMed 

Google Scholar 
Abdullah, H., Phairatana, T. & Jeerapan, I. Tackling the challenges of developing microneedle-based electrochemical sensors. Microchimica Acta 189, 440 (2022).Article 
CAS 
PubMed 

Google Scholar 
Park, Y.-G., Lee, S. & Park, J.-U. Recent Progress in Wireless Sensors for Wearable Electronics. Sensors 19, https://doi.org/10.3390/s19204353 (2019).Baghayeri, M., Veisi, H. & Ghanei-Motlagh, M. Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens. Actuators B: Chem. 249, 321–330 (2017).Article 
CAS 

Google Scholar 
Teymourian, H., Barfidokht, A. & Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020).Article 
CAS 
PubMed 

Google Scholar 
Khumngern, S. & Jeerapan, I. Advances in wearable electrochemical antibody-based sensors for cortisol sensing. Anal. Bioanal. Chem. 415, 3863–3877 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lee, H.-B., Meeseepong, M., Trung, T. Q., Kim, B.-Y. & Lee, N.-E. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens. Bioelectron. 156, 112133 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ye, C. et al. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nature Nanotechnology https://doi.org/10.1038/s41565-023-01513-0 (2023).Singh, N. K., Chung, S., Chang, A.-Y., Wang, J. & Hall, D. A. A non-invasive wearable stress patch for real-time cortisol monitoring using a pseudoknot-assisted aptamer. Biosens. Bioelectron. 227, 115097 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yang, C., Denno, M. E., Pyakurel, P. & Venton, B. J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Analytica Chim. Acta 887, 17–37 (2015).Article 
CAS 

Google Scholar 
Brainina, K., Stozhko, N., Bukharinova, M. & Vikulova, E. Nanomaterials: Electrochemical Properties and Application in Sensors. 3, https://doi.org/10.1515/psr-2018-8050 (2018).Chen, A. & Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42, 5425–5438 (2013).Article 
CAS 
PubMed 

Google Scholar 
Ali, A. et al. Recent progress in energy harvesting systems for wearable technology. Energy Strategy Rev. 49, 101124 (2023).Article 

Google Scholar 
Rong, G., Zheng, Y. & Sawan, M. Energy Solutions for Wearable Sensors: A Review. Sensors 21, https://doi.org/10.3390/s21113806 (2021).Dahiya, A. S. et al. Review—Energy Autonomous Wearable Sensors for Smart Healthcare: A Review. J. Electrochem. Soc. 167, 037516 (2020).Article 
CAS 

Google Scholar 
Bandodkar, A. J. & Wang, J. Wearable Biofuel Cells: A Review. Electroanalysis 28, 1188–1200 (2016).Article 
CAS 

Google Scholar 
Wang, L. et al. Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications. Adv. Energy Sustainability Res. 2, 2100031 (2021).Article 
CAS 

Google Scholar 
Jeerapan, I., Sempionatto, J. R. & Wang, J. On-Body Bioelectronics: Wearable Biofuel Cells for Bioenergy Harvesting and Self-Powered Biosensing. Adv. Funct. Mater. 30, 1906243 (2020).Article 
CAS 

Google Scholar 
Saha, T. et al. Wearable Electrochemical Glucose Sensors in Diabetes Management: A Comprehensive Review. Chem. Rev. 123, 7854–7889 (2023).Article 
CAS 
PubMed 

Google Scholar 
Verma, D. et al. Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosens. Bioelectron.: X 11, 100153 (2022).CAS 

Google Scholar 
ul Haque, S., Yasir, M. & Cosnier, S. Recent advancements in the field of flexible/wearable enzyme fuel cells. Biosens. Bioelectron. 214, 114545 (2022).Article 
CAS 
PubMed 

Google Scholar 
Khan, A. et al. A review on advanced nanocomposites materials based smart textile biosensor for healthcare monitoring from human sweat. Sens. Actuators A: Phys. 350, 114093 (2023).Article 
CAS 

Google Scholar 
Khaleque, M. A. et al. Nanostructured wearable electrochemical and biosensor towards healthcare management: a review. RSC Adv. 13, 22973–22997 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, H., Zhang, Y., Kjøniksen, A.-L., Zhou, X. & Zhou, X. Wearable Biofuel Cells: Advances from Fabrication to Application. Adv. Funct. Mater. 31, 2103976 (2021).Article 
CAS 

Google Scholar 
Wang, J. et al. Flexible and wearable fuel cells: A review of configurations and applications. J. Power Sources 551, 232190 (2022).Article 
CAS 

Google Scholar 
Garland, N. T., Kaveti, R. & Bandodkar, A. J. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. Adv. Mater. 35, 2303197 (2023).Article 
CAS 

Google Scholar 
Song, Y., Mukasa, D., Zhang, H. & Gao, W. Self-Powered Wearable Biosensors. Acc. Mater. Res. 2, 184–197 (2021).Article 
CAS 

Google Scholar 
Maduraiveeran, G., Sasidharan, M. & Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 103, 113–129 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lee, C.-K. & Au-Duong, A.-N. Enzyme Immobilization on Nanoparticles: Recent Applications in Emerging Areas in Bioengineering (ed Ho Nam Chang) 67-80 (Wiley-VCH, 2018). https://doi.org/10.1002/9783527803293.ch4Arabacı, N., Karaytuğ, T., Demirbas, A., Ocsoy, I. & Katı, A. Nanomaterials for Enzyme Immobilization in Green Synthesis of Nanomaterials for Bioenergy Applications 165-190 (2020). https://doi.org/10.1002/9781119576785.ch7Ansari, S. A. & Husain, Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 30, 512–523 (2012).Article 
CAS 
PubMed 

Google Scholar 
Di Bari, C. et al. Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction. Electrochim. Acta 191, 500–509 (2016).Article 

Google Scholar 
Khan, R. et al. Two-Dimensional Nanostructures for Electrochemical Biosensor. Sensors 21, https://doi.org/10.3390/s21103369 (2021).Lu, X., Zhang, H., Ni, Y., Zhang, Q. & Chen, J. Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosens. Bioelectron. 24, 93–98 (2008).Article 
CAS 
PubMed 

Google Scholar 
Li, Y., Shi, L., Han, G., Xiao, Y. & Zhou, W. Electrochemical biosensing of carbaryl based on acetylcholinesterase immobilized onto electrochemically inducing porous graphene oxide network. Sens. Actuators B: Chem. 238, 945–953 (2017).Article 
CAS 

Google Scholar 
Kucherenko, I. S., Soldatkin, O. O., Kucherenko, D. Y., Soldatkina, O. V. & Dzyadevych, S. V. Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. Nanoscale Adv. 1, 4560–4577 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, J., Wang, Y. & Hu, S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchimica Acta 184, 1–44 (2017).Article 
CAS 

Google Scholar 
Newman, J. D. & Setford, S. J. Enzymatic biosensors. Mol. Biotechnol. 32, 249–268 (2006).Article 
CAS 
PubMed 

Google Scholar 
Nguyen, H. H., Lee, S. H., Lee, U. J., Fermin, C. D. & Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 12, https://doi.org/10.3390/ma12010121 (2019).Sassolas, A., Blum, L. J. & Leca-Bouvier, B. D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30, 489–511 (2012).Article 
CAS 
PubMed 

Google Scholar 
Bollella, P. & Gorton, L. Enzyme based amperometric biosensors. Curr. Opin. Electrochem. 10, 157–173 (2018).Article 
CAS 

Google Scholar 
Li, L. et al. Fully integrated wearable microneedle biosensing platform for wide-range and real-time continuous glucose monitoring. Acta Biomaterialia 175, 199–213 (2024).Article 
CAS 
PubMed 

Google Scholar 
Zheng, L., Liu, Y. & Zhang, C. A sample-to-answer, wearable cloth-based electrochemical sensor (WCECS) for point-of-care detection of glucose in sweat. Sens. Actuators B: Chem. 343, 130131 (2021).Article 
CAS 

Google Scholar 
Alam, F. et al. Flexible and Linker-Free Enzymatic Sensors Based on Zinc Oxide Nanoflakes for Noninvasive L-Lactate Sensing in Sweat. IEEE Sens. J. 20, 5102–5109 (2020).Article 
CAS 

Google Scholar 
RoyChoudhury, S. et al. Continuous Monitoring of Wound Healing Using a Wearable Enzymatic Uric Acid Biosensor. J. Electrochem. Soc. 165, B3168 (2018).Article 
CAS 

Google Scholar 
Ibáñez-Redín, G. et al. Wearable potentiometric biosensor for analysis of urea in sweat. Biosens. Bioelectron. 223, 114994 (2023).Article 
PubMed 

Google Scholar 
Xuan, X., Yoon, H. S. & Park, J. Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109, 75–82 (2018).Article 
CAS 
PubMed 

Google Scholar 
Chong, Y. W., Ismail, W., Ko, K. & Lee, C. Y. Energy Harvesting For Wearable Devices: A Review. IEEE Sens. J. 19, 9047–9062 (2019).Article 
CAS 

Google Scholar 
Mitcheson, P. D. in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. 3432-3436. https://doi.org/10.1109/IEMBS.2010.5627952Rasmussen, M., Abdellaoui, S. & Minteer, S. D. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 76, 91–102 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhou, M. & Wang, J. Biofuel Cells for Self-Powered Electrochemical Biosensing and Logic Biosensing: A Review. Electroanalysis 24, 197–209 (2012).Article 
CAS 

Google Scholar 
Fu, L., Liu, J., Hu, Z. & Zhou, M. Recent Advances in the Construction of Biofuel Cells Based Self-powered Electrochemical Biosensors: A Review. Electroanalysis 30, 2535–2550 (2018).Article 
CAS 

Google Scholar 
He, R. et al. Flexible Miniaturized Sensor Technologies for Long-Term Physiological Monitoring. npj Flex. Electron. 6, 20 (2022).Article 

Google Scholar 
Wang, J. et al. Ultra-Small Wearable Flexible Biosensor for Continuous Sweat Analysis. ACS Sens. 7, 3102–3107 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cui, M., Chai, Z., Lu, Y., Zhu, J. & Chen, J. Developments of polyurethane in biomedical applications: A review. Resour. Chem. Mater. 2, 262–276 (2023).CAS 

Google Scholar 
He, Z. et al. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 11, 5884–5890 (2019).Article 
CAS 
PubMed 

Google Scholar 
Slobodian, P., Danova, R., Olejnik, R., Matyas, J. & Münster, L. Multifunctional flexible and stretchable polyurethane/carbon nanotube strain sensor for human breath monitoring. Polym. Adv. Technol. 30, 1891–1898 (2019).Article 
CAS 

Google Scholar 
Choi, Y.-I. et al. Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions. Nanoscale 11, 3916–3924 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chung, M. et al. Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-Active Au/TPU Electrospun Nanofibers. ACS Appl. Mater. Interfaces 13, 51504–51518 (2021).Article 
CAS 
PubMed 

Google Scholar 
Fang, Y. et al. Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor. Compos. Part B: Eng. 219, 108965 (2021).Article 
CAS 

Google Scholar 
Bandodkar, A. J., Nuñez-Flores, R., Jia, W. & Wang, J. All-Printed Stretchable Electrochemical Devices. Adv. Mater. 27, 3060–3065 (2015).Article 
CAS 
PubMed 

Google Scholar 
Jeerapan, I., Sempionatto, J. R., Pavinatto, A., You, J.-M. & Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 4, 18342–18353 (2016). The paper demonstrates highly stretchable textile-based glucose and lactate biofuel cells, acting as self-powered sweat sensors, fabricated using screen-printing of customized stress-enduring inks.Article 
CAS 

Google Scholar 
Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016). The electrochemical device with thermoresponsive microneedles, featuring stretchable designs, provides conformal contacts to human skin under deformation for diabetes monitoring and therapy.Article 
PubMed 

Google Scholar 
Bandodkar, A. J., Jeerapan, I., You, J.-M., Nuñez-Flores, R. & Wang, J. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability. Nano Lett. 16, 721–727 (2016). Highly stretchable printed carbon nanotube-based electrochemical sensors and biofuel cells were fabricated, capable of withstanding strains as high as 500% with negligible effects on their structural integrity and electrochemical performance.Article 
CAS 
PubMed 

Google Scholar 
Chen, X. et al. Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics. Adv. Funct. Mater. 29, 1905785 (2019). The functionalized buckypaper electrodes are assembled onto a stretchable, screen-printed current collector with an “island-bridge” configuration, ensuring conformal contact between the wearable biofuel cell and the human body and endows the biofuel cell with good performance stability under stretching conditions.Article 
CAS 

Google Scholar 
Asaduzzaman, M. et al. A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis. Biosens. Bioelectron. 219, 114846 (2023). A functionalized hybridized nanoporous carbon-encapsulated flexible three-dimensional porous graphene enhanced the electrochemical surface area, heterogeneous electron transfer rate, and electrocatalytic activity for the detection of lactate, glucose, temperature, and pH in human perspiration.Article 
CAS 
PubMed 

Google Scholar 
Ania, C. O., Gomis-Berenguer, A., Dentzer, J. & Vix-Guterl, C. Nanoconfinement of glucose oxidase on mesoporous carbon electrodes with tunable pore sizes. J. Electroanalytical Chem. 808, 372–379 (2018).Article 
CAS 

Google Scholar 
Yoon, H. et al. A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators B: Chem. 311, 127866 (2020).Article 
CAS 

Google Scholar 
Xiao, X., Siepenkoetter, T., Conghaile, P. Ó., Leech, D. & Magner, E. Nanoporous Gold-Based Biofuel Cells on Contact Lenses. ACS Appl. Mater. Interfaces 10, 7107–7116 (2018). Mechanically stable and flexible nanoporous gold electrodes were prepared using an electrochemical dealloying method for the fabrication of lactate/O2 enzymatic biofuel cell.Article 
CAS 
PubMed 

Google Scholar 
Sun, M. et al. A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy 86, 106061 (2021). The enzymatic screen-printed electrode (SPE) arrays based on the three-dimensional coralloid nitrogen doped hierarchical-micromesoporous carbon aerogels (3D-NHCAs) was utilized for the fabrication of a flexible and wearable epidermal ethanol biofuel cell.Article 
CAS 

Google Scholar 
Qiu, H. et al. Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens. Bioelectron. 24, 3014–3018 (2009).Article 
CAS 
PubMed 

Google Scholar 
Aldea, A. et al. Gold coated electrospun polymeric fibres as new electrode platform for glucose oxidase immobilization. Microchemical J. 165, 106108 (2021).Article 
CAS 

Google Scholar 
Garland, N. T. et al. Wearable Flexible Perspiration Biosensors Using Laser-Induced Graphene and Polymeric Tape Microfluidics. ACS Appl. Mater. Interfaces 15, 38201–38213 (2023).Article 
CAS 
PubMed 

Google Scholar 
Li, M. et al. A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosens. Bioelectron. 174, 112828 (2021).Article 
CAS 
PubMed 

Google Scholar 
Temoçin, Z. Designing of a stable and selective glucose biosensor by glucose oxidase immobilization on glassy carbon electrode sensitive to H2O2 via nanofiber interface. J. Appl. Electrochem. 51, 283–293 (2021).Article 

Google Scholar 
Jirakunakorn, R. et al. Uric acid enzyme biosensor based on a screen-printed electrode coated with Prussian blue and modified with chitosan-graphene composite cryogel. Microchemical J. 154, 104624 (2020).Article 
CAS 

Google Scholar 
Lim, S., Jung, G. A., Glover, D. J. & Clark, D. S. Enhanced Enzyme Activity through Scaffolding on Customizable Self-Assembling Protein Filaments. Small 15, 1805558 (2019).Article 

Google Scholar 
Kalyana Sundaram, S. D., Hossain, M. M., Rezki, M., Ariga, K. & Tsujimura, S. Enzyme Cascade Electrode Reactions with Nanomaterials and Their Applicability towards Biosensor and Biofuel Cells. Biosensors 13, 1018 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Macazo, F. C. & Minteer, S. D. Enzyme cascades in biofuel cells. Curr. Opin. Electrochem. 5, 114–120 (2017).Article 
CAS 

Google Scholar 
Guan, S. et al. A Dual-Functional MXene-Based Bioanode for Wearable Self-Charging Biosupercapacitors. Adv. Mater. 36, 2305854 (2024). MXene/single-walled carbon nanotube/lactate oxidase hierarchical structure is designed, which provides a superior three-dimensional catalytic microenvironment for enzyme accommodation to harvest energy from sweat.Article 
CAS 

Google Scholar 
Kwon, C. H. et al. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nat. Commun. 9, 4479 (2018). The paper demonstrates ultrahigh-power hybrid DET-BFCs that maximize the electrocatalytic activity on highly porous cotton fibers.Article 
PubMed 
PubMed Central 

Google Scholar 
Reuillard, B. et al. High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Phys. Chem. Chem. Phys. 15, 4892–4896 (2013). A high-power enzymatic biofuel cell was demonstrated based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube three-dimensional matrix.Article 
CAS 
PubMed 

Google Scholar 
Elouarzaki, K., Cheng, D., Fisher, A. C. & Lee, J.-M. Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells. Nat. Energy 3, 574–581 (2018).Article 

Google Scholar 
Ben Rejeb, K., Abdelly, C. & Savouré, A. How reactive oxygen species and proline face stress together. Plant Physiol. Biochem. 80, 278–284 (2014).Article 
PubMed 

Google Scholar 
van den Burg, B. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6, 213–218 (2003).Article 
PubMed 

Google Scholar 
Bollella, P. & Katz, E. Enzyme-Based Biosensors: Tackling Electron Transfer Issues. Sensors 20, https://doi.org/10.3390/s20123517 (2020).Ittisoponpisan, S. & Jeerapan, I. In Silico Analysis of Glucose Oxidase from Aspergillus niger: Potential Cysteine Mutation Sites for Enhancing Protein Stability. Bioengineering 8, https://doi.org/10.3390/bioengineering8110188 (2021).Lin, Y. et al. Porous Enzymatic Membrane for Nanotextured Glucose Sweat Sensors with High Stability toward Reliable Noninvasive Health Monitoring. Adv. Funct. Mater. 29, 1902521 (2019).Article 

Google Scholar 
Jia, W.-Z., Wang, K. & Xia, X.-H. Elimination of electrochemical interferences in glucose biosensors. TrAC Trends Anal. Chem. 29, 306–318 (2010).Article 
CAS 

Google Scholar 
Mohammadzadeh Kakhki, R. Nafion based biosensors: a review of recent advances and applications. Int. J. Polymeric Mater. Polymeric Biomater. 1–18, https://doi.org/10.1080/00914037.2023.2297436.Adachi, T., Kitazumi, Y., Shirai, O. & Kano, K. Development Perspective of Bioelectrocatalysis-Based Biosensors. Sensors 20, https://doi.org/10.3390/s20174826 (2020).Jiang, Y. et al. Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Anal. Chem. 94, 297–311 (2022).Article 
CAS 
PubMed 

Google Scholar 
Abdul-Aziz, A. & Wong, F.-L. Interference elimination of an amperometric glucose biosensor using poly(hydroxyethyl methacrylate) membrane. Eng. Life Sci. 11, 20–25 (2011).Article 
CAS 

Google Scholar 
Tchekep, A. G. K., Suryanarayanan, V. & K Pattanayak, D. Alternative approach for highly sensitive and free-interference electrochemical dopamine sensing. Carbon 204, 57–69 (2023).Article 
CAS 

Google Scholar 
Jayakumar, K. et al. Tethering zwitterionic polymer coatings to mediated glucose biosensor enzyme electrodes can decrease sensor foreign body response yet retain sensor sensitivity to glucose. Biosens. Bioelectron. 219, 114815 (2023).Article 
CAS 
PubMed 

Google Scholar 
Goda, T., Ishihara, K. & Miyahara, Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. Journal of Applied Polymer Science 132, https://doi.org/10.1002/app.41766 (2015).Sangsawang, R., Buranachai, C., Thavarungkul, P., Kanatharana, P. & Jeerapan, I. Cavitas electrochemical sensors for the direct determination of salivary thiocyanate levels. Microchimica Acta 188, 415 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhao, Z. et al. A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. Lab a Chip 21, 916–932 (2021).< /span>Article 
CAS 

Google Scholar 
Ma, B. et al. Wearable capillary microfluidics for continuous perspiration sensing. Talanta 212, 120786 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mei, X., Yang, J., Liu, J. & Li, Y. Wearable, nanofiber-based microfluidic systems with integrated electrochemical and colorimetric sensing arrays for multiplex sweat analysis. Chem. Eng. J. 454, 140248 (2023).Article 
CAS 

Google Scholar 
Saha, T. et al. Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring. ACS Sens. 7, 2037–2048 (2022). A continuous sweat lactate monitoring platform was demonstrated by combining a hydrogel for osmotic sweat extraction, with a paper microfluidic channel for facilitating sweat transport and management.Article 
CAS 
PubMed 

Google Scholar 
Bae, C. W., Chinnamani, M. V., Lee, E. H. & Lee, N.-E. Stretchable Non-Enzymatic Fuel Cell-Based Sensor Patch Integrated with Thread-Embedded Microfluidics for Self-Powered Wearable Glucose Monitoring. Adv. Mater. Interfaces 9, 2200492 (2022). A stretchable non-enzymatic fuel cell-based sensor patch was demonstrated using cotton thread-embedded microfluidics for self-powered wearable glucose monitoring.Article 
CAS 

Google Scholar 
Vinoth, R., Nakagawa, T., Mathiyarasu, J. & Mohan, A. M. V. Fully Printed Wearable Microfluidic Devices for High-Throughput Sweat Sampling and Multiplexed Electrochemical Analysis. ACS Sens. 6, 1174–1186 (2021).Article 
CAS 
PubMed 

Google Scholar 
Xiao, J. et al. Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Anal. Chem. 91, 14803–14807 (2019).Article 
CAS 
PubMed 

Google Scholar 
Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Choi, J. et al. Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature. ACS Sens. 4, 379–388 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y. et al. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab a Chip 19, 1545–1555 (2019).Article 
CAS 

Google Scholar 
Li, S., Ma, Z., Cao, Z., Pan, L. & Shi, Y. Advanced Wearable Microfluidic Sensors for Healthcare Monitoring. Small 16, 1903822 (2020).Article 
CAS 

Google Scholar 
Chen, G., Zheng, J., Liu, L. & Xu, L. Application of Microfluidics in Wearable Devices. Small Methods 3, 1900688 (2019).Article 
CAS 

Google Scholar 
Zhang, H. et al. Wearable microfluidic patch with integrated capillary valves and pumps for sweat management and multiple biomarker analysis. Biomicrofluidics 16, 044104 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shajari, S. et al. MicroSweat: A Wearable Microfluidic Patch for Noninvasive and Reliable Sweat Collection Enables Human Stress Monitoring. Adv. Sci. 10, 2204171 (2023).Article 
CAS 

Google Scholar 
Yeo, J. C., Kenry & Lim, C. T. Emergence of microfluidic wearable technologies. Lab a Chip 16, 4082–4090 (2016).Article 
CAS 

Google Scholar 
Lin, H. et al. A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis. Nat. Commun. 11, 4405 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mishra, N. et al. A soft wearable microfluidic patch with finger-actuated pumps and valves for on-demand, longitudinal, and multianalyte sweat sensing. ACS Sens. 7, 3169–3180 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yang, J. H., David, U., Noh, Y. S. & Koh, A. Dual-valved skin-interfaced microfluidic device for programmed time-control sweat collection. Sens. Actuators B: Chem. 395, 134441 (2023).Article 
CAS 

Google Scholar 
Scodeller, P. et al. Layer-by-Layer Self-Assembled Osmium Polymer-Mediated Laccase Oxygen Cathodes for Biofuel Cells: The Role of Hydrogen Peroxide. J. Am. Chem. Soc. 132, 11132–11140 (2010).Article 
CAS 
PubMed 

Google Scholar 
Brunel, L. et al. Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem. Commun. 9, 331–336 (2007).Article 
CAS 

Google Scholar 
Cussler, E. L. Diffusion: mass transfer in fluid systems. (Cambridge university press, 2009).Lei, Y., Sun, R., Zhang, X., Feng, X. & Jiang, L. Oxygen-Rich Enzyme Biosensor Based on Superhydrophobic Electrode. Adv. Mater. 28, 1477–1481 (2016).Article 
CAS 
PubMed 

Google Scholar 
Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhou, W. et al. Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes. ACS Nano 14, 5798–5805 (2020).Article 
CAS 
PubMed 

Google Scholar 
Liang, X. et al. Hydrophilic, Breathable, and Washable Graphene Decorated Textile Assisted by Silk Sericin for Integrated Multimodal Smart Wearables. Adv. Funct. Mater. 32, 2200162 (2022).Article 
CAS 

Google Scholar 
Liu, L. et al. Nanofiber-Reinforced Silver Nanowires Network as a Robust, Ultrathin, and Conformable Epidermal Electrode for Ambulatory Monitoring of Physiological Signals. Small 15, 1900755 (2019).Article 

Google Scholar 
Qiu, Q. et al. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 58, 750–758 (2019).Article 
CAS 

Google Scholar 
Yan, X. et al. Highly breathable, surface-hydrophobic and wet-adhesive silk based epidermal electrode for long-term electrophysiological monitoring. Compos. Sci. Technol. 230, 109751 (2022).Article 
CAS 

Google Scholar 
Yang, S. et al. Permeable and washable electronics based on polyamide fibrous membrane for wearable applications. Compos. Sci. Technol. 207, 108729 (2021).Article 
CAS 

Google Scholar 
Brown, M. S. et al. Electronic-ECM: A Permeable Microporous Elastomer for an Advanced Bio-Integrated Continuous Sensing Platform. Adv. Mater. Technol. 5, 2000242 (2020).Article 
CAS 

Google Scholar 
Kang, Z. et al. A wearable and flexible lactic-acid/O2 biofuel cell with an enhanced air-breathing biocathode. Biosens. Bioelectron. 246, 115845 (2024). A superhydrophobic base electrode creating an efficient air-solid-liquid triphase interface is developed to improve the oxygen supply efficiency for the air-breathing biocathode.Article 
CAS 
PubMed 

Google Scholar 
Zhuo, J. et al. A breathable and woven hybrid energy harvester with optimized power management for sustainably powering electronics. Nano Energy 112, 108436 (2023). The paper describes a breathable and woven hybrid energy harvester with breathability, flexibility, and comfortability that was woven from a triboelectric nanogenerator and biofuel cells to sustainably power electronics.Article 
CAS 

Google Scholar 
Jeerapan, I., Sempionatto, J. R., You, J.-M. & Wang, J. Enzymatic glucose/oxygen biofuel cells: Use of oxygen-rich cathodes for operation under severe oxygen-deficit conditions. Biosens. Bioelectron. 122, 284–289 (2018). The oxygen-rich cathode was demonstrated using a polychlorotrifluoroethylene binder, which provides an internal oxygen supply for the BFC reduction reaction.Article 
CAS 
PubMed 

Google Scholar 
Wang, J., Chen, L. & Chatrathi, M.-P. Evaluation of different fluorocarbon oils for their internal oxygen supply in glucose microsensors operated under oxygen-deficit conditions. Analytica Chim. Acta 411, 187–192 (2000).Article 
CAS 

Google Scholar 
Rasitanon, N. et al. Redox-Mediated Gold Nanoparticles with Glucose Oxidase and Egg White Proteins for Printed Biosensors and Biofuel Cells. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms24054657 (2023). The paper demonstrates the biointerface of using egg white proteins to prevent the escape of enzymes and provide a microenvironment for printed biosensors and biofuel cells.Liu, X. et al. Coupling of Silk Fibroin Nanofibrils Enzymatic Membrane with Ultra-Thin PtNPs/Graphene Film to Acquire Long and Stable On-Skin Sweat Glucose and Lactate Sensing. Small Methods 5, 2000926 (2021). A bio-active porous enzymatic nanofiber membrane composed of silk fibroin nanofibrils and enzymes was developed to retain the enzymes for sweat glucose and lactate sensing.Article 
CAS 

Google Scholar 
Jeerapan, I. et al. Fully edible biofuel cells. J. Mater. Chem. B 6, 3571–3578 (2018).Article 
CAS 
PubMed 

Google Scholar 
Rafiq, K. et al. Fabrication of a highly effective electrochemical urea sensing platform based on urease-immobilized silk fibroin scaffold and aminated glassy carbon electrode. Sens. Actuators B: Chem. 251, 472–480 (2017).Article 
CAS 

Google Scholar 
Molinnus, D. et al. Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk. Biosens. Bioelectron. 183, 113204 (2021).Article 
CAS 
PubMed 

Google Scholar 
Lu, S. et al. Stabilization of Enzymes in Silk Films. Biomacromolecules 10, 1032–1042 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wu, Z. et al. Interstitial fluid-based wearable biosensors for minimally invasive healthcare and biomedical applications. Commun. Mater. 5, 33 (2024).Article 
CAS 

Google Scholar 
Zhang, P. et al. Wearable transdermal colorimetric microneedle patch for Uric acid monitoring based on peroxidase-like polypyrrole nanoparticles. Analytica Chim. Acta 1212, 339911 (2022).Article 
CAS 

Google Scholar 
Kim, J. et al. Simultaneous Monitoring of Sweat and Interstitial Fluid Using a Single Wearable Biosensor Platform. Adv. Sci. 5, 1800880 (2018).Article 

Google Scholar 
Goud, K. Y. et al. Wearable electrochemical microneedle sensing platform for real-time continuous interstitial fluid monitoring of apomorphine: Toward Parkinson management. Sens. Actuators B: Chem. 354, 131234 (2022).Article 
CAS 

Google Scholar 
Dai, Y. et al. Wearable Sensor Patch with Hydrogel Microneedles for In Situ Analysis of Interstitial Fluid. ACS Appl. Mater. Interfaces 15, 56760–56773 (2023).CAS 

Google Scholar 
Dervisevic, M. et al. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens. Bioelectron. 222, 114955 (2023).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. High-Performance Flexible Microneedle Array as a Low-Impedance Surface Biopotential Dry Electrode for Wearable Electrophysiological Recording and Polysomnography. Nano-Micro Lett. 14, 132 (2022).Article 
CAS 

Google Scholar 
Zhang, B. L., Yang, Y., Zhao, Z. Q. & Guo, X. D. A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing. Electrochim. Acta 358, 136917 (2020).Article 
CAS 

Google Scholar 
Kashaninejad, N. et al. Microneedle Arrays for Sampling and Sensing Skin Interstitial Fluid. Chemosensors 9, 83 (2021).Saifullah, K. M. & Faraji Rad, Z. Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors. Adv. Mater. Interfaces 10, 2201763 (2023).Article 

Google Scholar 
Parrilla, M. et al. Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment. ACS Sens. 8, 4161–4170 (2023).Article 
CAS 
PubMed 

Google Scholar 
Li, Z. et al. Electrochemical detection of cholesterol in human biofluid using microneedle sensor. J. Mater. Chem. B 11, 6075–6081 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chinnamani, M. V. et al. Soft microfiber-based hollow microneedle array for stretchable microfluidic biosensing patch with negative pressure-driven sampling. Biosens. Bioelectron. 237, 115468 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lee, D.-S., Li, C. G., Ihm, C. & Jung, H. A three-dimensional and bevel-angled ultrahigh aspect ratio microneedle for minimally invasive and painless blood sampling. Sens. Actuators B: Chem. 255, 384–390 (2018).Article 
CAS 

Google Scholar 
Goud, K. Y. et al. Wearable Electrochemical Microneedle Sensor for Continuous Monitoring of Levodopa: Toward Parkinson Management. ACS Sens. 4, 2196–2204 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, H. et al. Microneedle-Based Potentiometric Sensing System for Continuous Monitoring of Multiple Electrolytes in Skin Interstitial Fluids. ACS Sens. 6, 2181–2190 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mohan, A. M. V., Windmiller, J. R., Mishra, R. K. & Wang, J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens. Bioelectron. 91, 574–579 (2017).Article 
CAS 
PubMed 

Google Scholar 
Caliò, A. et al. Polymeric microneedles based enzymatic electrodes for electrochemical biosensing of glucose and lactic acid. Sens. Actuators B: Chem. 236, 343–349 (2016).Article 

Google Scholar 
Bollella, P., Sharma, S., Cass, A. E. G. & Antiochia, R. Minimally-invasive Microneedle-based Biosensor Array for Simultaneous Lactate and Glucose Monitoring in Artificial Interstitial Fluid. Electroanalysis 31, 374–382 (2019).Article 
CAS 

Google Scholar 
De la Paz, E. et al. Non-invasive monitoring of interstitial fluid lactate through an epidermal iontophoretic device. Talanta 254, 124122 (2023).Article 
PubMed 

Google Scholar 
Pikal, M. J. The role of electroosmotic flow in transdermal iontophoresis. Adv. Drug Deliv. Rev. 46, 281–305 (2001).Article 
CAS 
PubMed 

Google Scholar 
Gupta, D. K., Ahad, A., Aqil, M., Al-Mohizea, A. M. & Al-Jenoobi, F. I. Chapter 18 – Iontophoretic drug delivery: concepts, approaches, and applications in Advanced and Modern Approaches for Drug Delivery (eds Amit Kumar Nayak, Md Saquib Hasnain, Bibek Laha, & Sabyasachi Maiti) 515-546 (Academic Press, 2023). https://doi.org/10.1016/B978-0-323-91668-4.00016-2Zheng, H. et al. Reverse iontophoresis with the development of flexible electronics: A review. Biosens. Bioelectron. 223, 115036 (2023).Article 
CAS 
PubMed 

Google Scholar 
Park, H., Park, W. & Lee, C. H. Electrochemically active materials and wearable biosensors for the in situ analysis of body fluids for human healthcare. NPG Asia Mater. 13, 23 (2021).Article 
CAS 

Google Scholar 
Chaudon, M. J., Hulea, O., Yakoub, A., Monnier, P. & Saadaoui, M. Wearable device for iontophoretic treatment and monitoring of pressure ulcers: Proof-of-concept. Med. Eng. Phys. 107, 103861 (2022).Article 
PubMed 

Google Scholar 
Benoît, L., Richard, H. G. & Delgado-Charro, M. B. Reverse iontophoresis for non-invasive transdermal monitoring. Physiological Meas. 25, R35 (2004).Article 

Google Scholar 
Cheng, Y. et al. A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosens. Bioelectron. 203, 114026 (2022).Article 
CAS 
PubMed 

Google Scholar 
Mohan, A. M. V., Rajendran, V., Mishra, R. K. & Jayaraman, M. Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC Trends Anal. Chem. 131, 116024 (2020).Article 
CAS 

Google Scholar 
Sempionatto, J. R. et al. Epidermal Enzymatic Biosensors for Sweat Vitamin C: Toward Personalized Nutrition. ACS Sens. 5, 1804–1813 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mastropasqua, L. et al. Corneal Cross-linking: Intrastromal Riboflavin Concentration in Iontophoresis-Assisted Imbibition Versus Traditional and Transepithelial Techniques. Am. J. Ophthalmol. 157, 623–630.e621 (2014).Article 
CAS 
PubMed 

Google Scholar 
Fan, Q., Sirkar, K. K. & Michniak, B. Iontophoretic transdermal drug delivery system using a conducting polymeric membrane. J. Membr. Sci. 321, 240–249 (2008).Article 
CAS 

Google Scholar 
Hao, J., Smith, K. A. & Li, S. K. Chemical method to enhance transungual transport and iontophoresis efficiency. Int. J. Pharmaceutics 357, 61–69 (2008).Article 
CAS 

Google Scholar 
Kim, J. et al. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 1, 1011–1019 (2016).Article 
CAS 

Google Scholar 
Bandodkar, A. J. et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ. Sci. 10, 1581–1589 (2017).Article 

Google Scholar 
Adekunle, A., Raghavan, V. & Tartakovsky, B. Real-time performance optimization and diagnostics during long-term operation of a solid anolyte microbial fuel cell biobattery. Batteries 5, 9 (2019).Batchu, K., Probst, D., Satomura, T. & Sode, K. Development of the BioBattery: A novel enzyme fuel cell using a multicopper oxidase as an anodic enzyme. Biosens. Bioelectron. 252, 116092 (2024).Article 
CAS 
PubMed 

Google Scholar 
Yoshida, S. et al. Totally organic electrical skin patch powered by flexible biobattery. J. Phys.: Energy 2, 044004 (2020).CAS 

Google Scholar 
Zhang, J. et al. A wearable self-powered biosensor system integrated with diaper for detecting the urine glucose of diabetic patients. Sens. Actuators B: Chem. 341, 130046 (2021).Article 
CAS 

Google Scholar 
Yuan, Y. et al. Self-adhesive wearable poly (vinyl alcohol)-based hybrid biofuel cell powered by human bio-fluids. Biosens. Bioelectron. 247, 115930 (2024).Article 
CAS 
PubMed 

Google Scholar 
Lee, J., Han, S. & Kwon, Y. Self-charging hybrid energy devices collaborated with enzymatic biofuel cells and supercapacitors. Chem. Eng. J. 487, 150557 (2024).Article 
CAS 

Google Scholar 
Alam, F. et al. Lactate biosensing: The emerging point-of-care and personal health monitoring. Biosens. Bioelectron. 117, 818–829 (2018).Article 
CAS 
PubMed 

Google Scholar 
Jo, S., Sung, D., Kim, S. & Koo, J. A review of wearable biosensors for sweat analysis. Biomed. Eng. Lett. 11, 117–129 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Komkova, M. A. et al. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosens. Bioelectron. 202, 113970 (2022).Article 
CAS 
PubMed 

Google Scholar 
Alizadeh, A. et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab a Chip 18, 2632–2641 (2018).Article 
CAS 

Google Scholar 
Kumar, N., Lin, Y.-J., Huang, Y.-C., Liao, Y.-T. & Lin, S.-P. Detection of lactate in human sweat via surface-modified, screen-printed carbon electrodes. Talanta 265, 124888 (2023).Article 
CAS 
PubMed 

Google Scholar 
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abellán-Llobregat, A. et al. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens. Bioelectron. 91, 885–891 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Cao, Q. et al. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 9, 5674–5681 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zahed, M. A. et al. A Nanoporous Carbon-MXene Heterostructured Nanocomposite-Based Epidermal Patch for Real-Time Biopotentials and Sweat Glucose Monitoring. Adv. Funct. Mater. 32, 2208344 (2022). The paper describes an epidermal patch for real-time biopotentials (ECG, EMG, EEG, and temperature) and sweat glucose monitoring using a nanoporous carbon-MXene heterostructured nanocomposite.Article 
CAS 

Google Scholar 
Xu, C. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electronics, https://doi.org/10.1038/s41928-023-01116-6 (2024). An electronic skin that can monitor multiple stress-relevant biomarkers and can differentiate three stressors with the help of a machine learning pipeline was demonstrated for stress response assessment.Zheng, X. T. et al. Carbon Dot-Doped Hydrogel Sensor Array for Multiplexed Colorimetric Detection of Wound Healing. ACS Appl. Mater. Interfaces 15, 17675–17687 (2023).Article 
CAS 
PubMed 

Google Scholar 
Tang, N. et al. Highly Efficient Self-Healing Multifunctional Dressing with Antibacterial Activity for Sutureless Wound Closure and Infected Wound Monitoring. Adv. Mater. 34, 2106842 (2022).Article 
CAS 

Google Scholar 
Garland, N. T. et al. A Miniaturized, Battery-Free, Wireless Wound Monitor That Predicts Wound Closure Rate Early. Adv. Healthc. Mater. 12, 2301280 (2023).Article 
CAS 

Google Scholar 
Sim, P., Strudwick, X. L., Song, Y., Cowin, A. J. & Garg, S. Influence of Acidic pH on Wound Healing In Vivo: A Novel Perspective for Wound Treatment. Int J. Mol. Sci. 23, 13655 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tang, N. et al. Wearable sensors and systems for wound healing-related pH and temperature detection. Micromachines 12, 243 (2021).Sharp, D. & Davis, J. Integrated urate sensors for detecting wound infection. Electrochem. Commun. 10, 709–713 (2008).Article 
CAS 

Google Scholar 
Sharp, D. Printed composite electrodes for in-situ wound pH monitoring. Biosens. Bioelectron. 50, 399–405 (2013).Article 
CAS 
PubMed 

Google Scholar 
Shirzaei Sani, E. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Xu, G. et al. Battery-Free and Wireless Smart Wound Dressing for Wound Infection Monitoring and Electrically Controlled On-Demand Drug Delivery. Adv. Funct. Mater. 31, 2100852 (2021). The paper shows battery-free and wireless smart wound dressing for wound infection monitoring and electrically controlled on-demand drug delivery.Article 
CAS 

Google Scholar 
Meng, L., Liu, S., Borsa, B. A., Eriksson, M. & Mak, W. C. A conducting polymer-based array with multiplex sensing and drug delivery capabilities for smart bandages. Commun. Mater. 5, 28 (2024). The paper presents a smart theranostic bandage-based on conducting polymers for multiplex sensing and drug delivery capabilities.Article 
CAS 

Google Scholar 
Jourdan, T., Debs, N. & Frindel, C. The contribution of machine learning in the validation of commercial wearable sensors for gait monitoring in patients: a systematic review. Sensors 21, 4808 (2021).Pires, I. M., Garcia, N. M., Pombo, N., Flórez-Revuelta, F. & Rodríguez, N. D. Validation Techniques for Sensor Data in Mobile Health Applications. J. Sens. 2016, 2839372 (2016).Article 

Google Scholar 
Liu, Z.-P. Identifying network-based biomarkers of complex diseases from high-throughput data. Biomark. Med. 10, 633–650 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J. et al. Recent advances in acoustic wave biosensors for the detection of disease-related biomarkers: A review. Analytica Chim. Acta 1164, 338321 (2021).Article 
CAS 

Google Scholar 
Hou, J., Liu, X., Hou, C., Huo, D. & Li, J. A PVDF-based colorimetric sensor array for noninvasive detection of multiple disease-related volatile organic compounds. Anal. Bioanal. Chem. 415, 6647–6661 (2023).Article 
CAS 
PubMed 

Google Scholar 
Dai, N. et al. Recent advances in wearable electromechanical sensors—Moving towards machine learning-assisted wearable sensing systems. Nano Energy 105, 108041 (2023).Article 
CAS 

Google Scholar 
Yazdanpanah, S., Shojae Chaeikar, S. & Jolfaei, A. Monitoring the security of audio biomedical signals communications in wearable IoT healthcare. Digital Commun. Netw. 9, 393–399 (2023).Article 

Google Scholar 
Wang, C., He, T., Zhou, H., Zhang, Z. & Lee, C. Artificial intelligence enhanced sensors – enabling technologies to next-generation healthcare and biomedical platform. Bioelectron. Med. 9, 17 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, M., Cui, D., Haick, H. & Tang, N. Artificial Intelligence-Based Medical Sensors for Healthcare System. Adv. Sens. Res. 3, 2300009 (2024).Article 

Google Scholar 
Rasheed, S. et al. Advances and challenges in portable optical biosensors for onsite detection and point-of-care diagnostics. TrAC Trends Anal. Chem. 173, 117640 (2024).Article 
CAS 

Google Scholar 
Kant, T. et al. Progress in the design of portable colorimetric chemical sensing devices. Nanoscale 15, 19016–19038 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wen, F. et al. Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy 78, 105155 (2020).Article 
CAS 

Google Scholar 
Olzhabay, Y., Ng, A. & Ukaegbu, I. A. Perovskite PV energy harvesting system for uninterrupted IoT device applications. Energies 14, 7946 (2021).Gao, Y., Cho, J. H., Ryu, J. & Choi, S. A scalable yarn-based biobattery for biochemical energy harvesting in smart textiles. Nano Energy 74, 104897 (2020).Article 
CAS 

Google Scholar 
Ryu, J., Gao, Y., Cho, J. H. & Choi, S. Horizontally structured microbial fuel cells in yarns and woven fabrics for wearable bioenergy harvesting. J. Power Sources 484, 229271 (2021).Article 
CAS 

Google Scholar 
Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tu, J., Torrente-Rodríguez, R. M., Wang, M. & Gao, W. The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Adv. Funct. Mater. 30, 1906713 (2020).Article 
CAS 

Google Scholar 
Yang, B., Li, J., Deng, H. & Zhang, L. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors. Crit. Rev. Anal. Chem. 46, 469–481 (2016).Article 
CAS 
PubMed 

Google Scholar 
Nasir, M. et al. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchimica Acta. 184, 323–342 (2017).Article 
CAS 

Google Scholar 
Calero, D., Paul, S., Gesing, A., Alves, F. & Cordioli, J. A. A technical review and evaluation of implantable sensors for hearing devices. Biomed. Eng. OnLine 17, 23 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ashammakhi, N. et al. Biodegradable Implantable Sensors: Materials Design, Fabrication, and Applications. Adv. Funct. Mater. 31, 2104149 (2021).Article 
CAS 

Google Scholar 
Min, J., Sempionatto, J. R., Teymourian, H., Wang, J. & Gao, W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 172, 112750 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yang, B., Jiang, X., Fang, X. & Kong, J. Wearable chem-biosensing devices: from basic research to commercial market. Lab a Chip 21, 4285–4310 (2021).Article 
CAS 

Google Scholar 
Xia, Y. et al. Wearable electrochemical sensor based on bimetallic MOF coated CNT/PDMS film electrode via a dual-stamping method for real-time sweat glucose analysis. Analytica Chim. Acta. 1278, 341754 (2023).Article 
CAS 

Google Scholar 
Han, J. et al. Pt-poly(L-lactic acid) microelectrode-based microsensor for in situ glucose detection in sweat. Biosens. Bioelectron. 170, 112675 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat. Talanta 198, 86–92 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chen, Q. et al. Silk-Based Electrochemical Sensor for the Detection of Glucose in Sweat. Biomacromolecules 23, 3928–3935 (2022).Article 
CAS 
PubMed 

Google Scholar 
Hozumi, S., Honda, S., Arie, T., Akita, S. & Takei, K. Multimodal Wearable Sensor Sheet for Health-Related Chemical and Physical Monitoring. ACS Sens. 6, 1918–1924 (2021).Article 
CAS 
PubMed 

Google Scholar 
Shu, Y. et al. Highly Stretchable Wearable Electrochemical Sensor Based on Ni-Co MOF Nanosheet-Decorated Ag/rGO/PU Fiber for Continuous Sweat Glucose Detection. Anal. Chem. 93, 16222–16230 (2021).Article 
CAS 
PubMed 

Google Scholar 
Oh, S. Y. et al. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection. ACS Appl. Mater. Interfaces 10, 13729–13740 (2018).Article 
CAS 
PubMed 

Google Scholar 
Liu, Y., Zhong, L., Zhang, S., Wang, J. & Liu, Z. An ultrasensitive and wearable photoelectrochemical sensor for unbiased and accurate monitoring of sweat glucose. Sens. Actuators B: Chem. 354, 131204 (2022).Article 
CAS 

Google Scholar 
Toi, P. T., Trung, T. Q., Dang, T. M. L., Bae, C. W. & Lee, N.-E. Highly Electrocatalytic, Durable, and Stretchable Nanohybrid Fiber for On-Body Sweat Glucose Detection. ACS Appl. Mater. Interfaces 11, 10707–10717 (2019).Article 
CAS 
PubMed 

Google Scholar 
Xuan, X. et al. Fully Integrated Wearable Device for Continuous Sweat Lactate Monitoring in Sports. ACS Sens. 8, 2401–2409 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, Z.-Q., Cao, X.-Q., Hua, Y. & Yu, C.-M. A Bifunctional Wearable Sensor Based on a Nanoporous Membrane for Simultaneous Detection of Sweat Lactate and Temperature. Analytical Chem. https://doi.org/10.1021/acs.analchem.3c05216 (2024).Zhao, Z. et al. Core-shell structured gold nanorods on thread-embroidered fabric-based microfluidic device for Ex Situ detection of glucose and lactate in sweat. Sens. Actuators B: Chem. 353, 131154 (2022).Article 
CAS 

Google Scholar 
Zhu, C. et al. A flexible electrochemical biosensor based on functionalized poly(3,4-ethylenedioxythiophene) film to detect lactate in sweat of the human body. J. Colloid Interface Sci. 617, 454–462 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, R., Zhai, Q., An, T., Gong, S. & Cheng, W. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 222, 121484 (2021).Article 
CAS 
PubMed 

Google Scholar 
Xuan, X., Pérez-Ràfols, C., Chen, C., Cuartero, M. & Crespo, G. A. Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sens. 6, 2763–2771 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, D. et al. In-situ preparation of lactate-sensing membrane for the noninvasive and wearable analysis of sweat. Biosens. Bioelectron. 210, 114303 (2022).Article 
CAS 
PubMed 

Google Scholar 
Huang, X. et al. Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Des. Manuf. 5, 201–209 (2022).Article 
CAS 

Google Scholar 
Luo, X. et al. Wearable Tape-Based Smart Biosensing Systems for Lactate and Glucose. IEEE Sens. J. 20, 3757–3765 (2020).Article 
CAS 

Google Scholar 
Luo, X. et al. Wearable Carbon Nanotube-Based Biosensors on Gloves for Lactate. Sensors 18, https://doi.org/10.3390/s18103398 (2018).Bae, C. W. et al. Fully Stretchable Capillary Microfluidics-Integrated Nanoporous Gold Electrochemical Sensor for Wearable Continuous Glucose Monitoring. ACS Appl. Mater. Interfaces 11, 14567–14575 (2019).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles