APOE–NOTCH axis governs elastogenesis during human cardiac valve remodeling

Aikawa, E. et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation 113, 1344–1352 (2006).Article 
PubMed 

Google Scholar 
Hinton, R. B. Jr. et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ. Res. 98, 1431–1438 (2006).Article 
CAS 
PubMed 

Google Scholar 
Votteler, M. et al. Elastogenesis at the onset of human cardiac valve development. Development 140, 2345–2353 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lindsey, S. E., Butcher, J. T. & Yalcin, H. C. Mechanical regulation of cardiac development. Front. Physiol. 5, 318 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Stuart, A. G. & Williams, A. Marfan’s syndrome and the heart. Arch. Dis. Child. 92, 351–356 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Waller, B. F., Howard, J. & Fess, S. Pathology of pulmonic valve stenosis and pure regurgitation. Clin. Cardiol. 18, 45–50 (1995).Article 
CAS 
PubMed 

Google Scholar 
Liu, A. C., Joag, V. R. & Gotlieb, A. I. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171, 1407–1418 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, H. et al. Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J. Cell Biol. 124, 855–863 (1994).Article 
CAS 
PubMed 

Google Scholar 
Sakai, L. Y., Keene, D. R. & Engvall, E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol. 103, 2499–2509 (1986).Article 
CAS 
PubMed 

Google Scholar 
Bressan, G. M. et al. Emilin, a component of elastic fibers preferentially located at the elastin–microfibrils interface. J. Cell Biol. 121, 201–212 (1993).Article 
CAS 
PubMed 

Google Scholar 
Kielty, C. M., Sherratt, M. J., Marson, A. & Baldock, C. Fibrillin microfibrils. Adv. Protein Chem. 70, 405–436 (2005).Article 
CAS 
PubMed 

Google Scholar 
Horiguchi, M. et al. Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc. Natl Acad. Sci. USA 106, 19029–19034 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sterner-Kock, A. et al. Disruption of the gene encoding the latent transforming growth factor-β binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev. 16, 2264–2273 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goddard, L. M. et al. Hemodynamic forces sculpt developing heart valves through a KLF2–WNT9B paracrine signaling axis. Dev. Cell 43, 274–289 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hogers, B., DeRuiter, M. C., Gittenberger-de Groot, A. C. & Poelmann, R. E. Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. Cardiovasc. Res. 41, 87–99 (1999).Article 
CAS 
PubMed 

Google Scholar 
Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).Article 
CAS 
PubMed 

Google Scholar 
Vermot, J. et al. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol. 7, e1000246 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Yalcin, H. C. et al. Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects. Am. J. Physiol. Heart Circ. Physiol. 299, H1728–H1735 (2010).Article 
CAS 
PubMed 

Google Scholar 
Cui, Y. et al. Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep. 26, 1934–1950 (2019).Article 
CAS 
PubMed 

Google Scholar 
Leshem, R. S. et al. A cell atlas of the human outflow tract of the heart and its adult derivatives. Preprint at bioRxiv https://doi.org/10.1101/2023.04.05.535627 (2023).Hulin, A. et al. Maturation of heart valve cell populations during postnatal remodeling. Development 146, dev173047 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, Y. & Mahley, R. W. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol. Dis. 72, 3–12 (2014).Article 
CAS 
PubMed 

Google Scholar 
Murakami, M., Sato, H., Miki, Y., Yamamoto, K. & Taketomi, Y. A new era of secreted phospholipase A2. J. Lipid Res. 56, 1248–1261 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grande-Allen, K. J., Griffin, B. P., Ratliff, N. B., Cosgrove, D. M. & Vesely, I. Glycosaminoglycan profiles of myxomatous mitral leaflets and chordae parallel the severity of mechanical alterations. J. Am. Coll. Cardiol. 42, 271–277 (2003).Article 
CAS 
PubMed 

Google Scholar 
Kim, A. J. et al. Deficiency of circulating monocytes ameliorates the progression of myxomatous valve degeneration in Marfan syndrome. Circulation 141, 132–146 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Saef, J. M. & Ghobrial, J. Valvular heart disease in congenital heart disease: a narrative review. Cardiovasc. Diagn. Ther. 11, 818–839 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Escalon, J. G. et al. Congenital anomalies of the pulmonary arteries: an imaging overview. Br. J. Radiol. 92, 20180185 (2019).Article 
PubMed 

Google Scholar 
Allen, W. M., Matloff, J. M. & Fishbein, M. C. Myxoid degeneration of the aortic valve and isolated severe aortic regurgitation. Am. J. Cardiol. 55, 439–444 (1985).Article 
CAS 
PubMed 

Google Scholar 
Aikawa, E. et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115, 377–386 (2007).Article 
CAS 
PubMed 

Google Scholar 
Fondard, O. et al. Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J. 26, 1333–1341 (2005).Article 
CAS 
PubMed 

Google Scholar 
Segura, A. M. et al. Immunohistochemistry of matrix metalloproteinases and their inhibitors in thoracic aortic aneurysms and aortic valves of patients with Marfan’s syndrome. Circulation 98, II331–II337 (1998).CAS 
PubMed 

Google Scholar 
Wang, M., Kim, S. H., Monticone, R. E. & Lakatta, E. G. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 65, 698–703 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wang, K., Meng, X. & Guo, Z. Elastin structure, synthesis, regulatory mechanism and relationship with cardiovascular diseases. Front. Cell Dev. Biol. 9, 596702 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Yoganathan, A. P., He, Z. & Casey Jones, S. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6, 331–362 (2004).Article 
CAS 
PubMed 

Google Scholar 
Parmar, K. M. et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest. 116, 49–58 (2006).Article 
CAS 
PubMed 

Google Scholar 
Bowers, S. L. K., Banerjee, I. & Baudino, T. A. The extracellular matrix: at the center of it all. J. Mol. Cell. Cardiol. 48, 474–482 (2010).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. Endocardial to myocardial Notch–Wnt–Bmp axis regulates early heart valve development. PLoS ONE 8, e60244 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hofmann, J. J. et al. Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development 139, 4449–4460 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
MacGrogan, D. et al. Sequential ligand-dependent Notch signaling activation regulates valve primordium formation and morphogenesis. Circ. Res. 118, 1480–1497 (2016).Article 
CAS 
PubMed 

Google Scholar 
High, F. A. et al. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue–tissue interactions during outflow tract development. J. Clin. Invest. 119, 1986–1996 (2009).CAS 
PubMed 
PubMed Central 

Google Scholar 
Donovan, J., Kordylewska, A., Jan, Y. N. & Utset, M. F. Tetralogy of Fallot and other congenital heart defects in Hey2 mutant mice. Curr. Biol. 12, 1605–1610 (2002).Article 
CAS 
PubMed 

Google Scholar 
Zohorsky, K., Lin, S. & Mequanint, K. Immobilization of Jagged1 enhances vascular smooth muscle cells maturation by activating the Notch pathway. Cells 10, 2089 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dong, Y. et al. NOTCH-mediated maintenance and expansion of human bone marrow stromal/stem cells: a technology designed for orthopedic regenerative medicine. Stem Cells Transl. Med. 3, 1456–1466 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. Jr. & Gimbrone, M. A. Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl Acad. Sci. USA 83, 2114–2117 (1986).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Masumura, T., Yamamoto, K., Shimizu, N., Obi, S. & Ando, J. Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF–Notch signaling pathways. Arterioscler. Thromb. Vasc. Biol. 29, 2125–2131 (2009).Article 
CAS 
PubMed 

Google Scholar 
Driessen, R. C. H. et al. Shear stress induces expression, intracellular reorganization and enhanced Notch activation potential of Jagged1. Integr. Biol. (Camb.) 10, 719–726 (2018).Article 
CAS 
PubMed 

Google Scholar 
Karimi, A. & Milewicz, D. M. Structure of the elastin-contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Can. J. Cardiol. 32, 26–34 (2016).Article 
PubMed 

Google Scholar 
Soler-López, M., Zanzoni, A., Lluís, R., Stelzl, U. & Aloy, P. Interactome mapping suggests new mechanistic details underlying Alzheimer’s disease. Genome Res. 21, 364–376 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Fukushima, H. et al. NOTCH2 Hajdu–Cheney mutations escape SCFFBW7-dependent proteolysis to promote osteoporosis. Mol. Cell 68, 645–658 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, Y. A., Zhou, B., Nabet, A. M., Wernig, M. & Sudhof, T. C. Differential signaling mediated by ApoE2, ApoE3, and ApoE4 in human neurons parallels Alzheimer’s disease risk. J. Neurosci. 39, 7408–7427 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jayakar, S. K. et al. Apolipoprotein E promotes invasion in oral squamous cell carcinoma. Am. J. Pathol. 187, 2259–2272 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mahley, R. W. & Rall, S. C. Jr. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 1, 507–537 (2000).Article 
CAS 
PubMed 

Google Scholar 
Li, L. et al. Jagged-1/Notch3 signaling transduction pathway is involved in apelin-13-induced vascular smooth muscle cells proliferation. Acta Biochim. Biophys. Sin. (Shanghai) 45, 875–881 (2013).Article 
CAS 
PubMed 

Google Scholar 
Wang, H. et al. Inflammatory cytokines induce NOTCH signaling in nucleus pulposus cells: implications in intervertebral disc degeneration. J. Biol. Chem. 288, 16761–16774 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Turnpenny, P. D. & Ellard, S. Alagille syndrome: pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 20, 251–257 (2012).Article 
CAS 
PubMed 

Google Scholar 
Henneman, P. et al. The expression of type III hyperlipoproteinemia: involvement of lipolysis genes. Eur. J. Hum. Genet. 17, 620–628 (2009).Article 
CAS 
PubMed 

Google Scholar 
Novaro, G. M., Sachar, R., Pearce, G. L., Sprecher, D. L. & Griffin, B. P. Association between apolipoprotein E alleles and calcific valvular heart disease. Circulation 108, 1804–1808 (2003).Article 
CAS 
PubMed 

Google Scholar 
Tanaka, K. et al. Age-associated aortic stenosis in apolipoprotein E-deficient mice. J. Am. Coll. Cardiol. 46, 134–141 (2005).Article 
CAS 
PubMed 

Google Scholar 
Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C.-C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoe, H.-S., Harris, D. C. & Rebeck, G. W. Multiple pathways of apolipoprotein E signaling in primary neurons. J. Neurochem. 93, 145–155 (2005).Article 
CAS 
PubMed 

Google Scholar 
Theendakara, V. et al. Direct transcriptional effects of apolipoprotein E. J. Neurosci. 36, 685–700 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Islam, S. et al. Presenilin is essential for ApoE secretion, a novel role of presenilin involved in Alzheimer’s disease pathogenesis. J. Neurosci. 42, 1574–1586 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, W. S. et al. Analysis of apolipoprotein E nuclear localization using green fluorescent protein and biotinylation approaches. Biochem. J. 409, 701–709 (2008).Article 
CAS 
PubMed 

Google Scholar 
Quinn, C. M. et al. Induction of fibroblast apolipoprotein E expression during apoptosis, starvation-induced growth arrest and mitosis. Biochem. J. 378, 753–761 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).Article 
CAS 
PubMed 

Google Scholar 
Su, Y. et al. Study of FOXO1-interacting proteins using TurboID-based proximity labeling technology. BMC Genomics 24, 146 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
He, Z. et al. The role of FOXG1 in the postnatal development and survival of mouse cochlear hair cells. Neuropharmacology 144, 43–57 (2019).Article 
CAS 
PubMed 

Google Scholar 
Adesina, A. M. et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum. Pathol. 46, 1859–1871 (2015).Article 
CAS 
PubMed 

Google Scholar 
Jeon, J. H., Suh, H. N., Kim, M. O., Ryu, J. M. & Han, H. J. Glucosamine-induced OGT activation mediates glucose production through cleaved Notch1 and FoxO1, which coordinately contributed to the regulation of maintenance of self-renewal in mouse embryonic stem cells. Stem Cells Dev. 23, 2067–2079 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kitamura, T. et al. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Invest. 117, 2477–2485 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sen, A., Nelson, T. J. & Alkon, D. L. ApoE4 and Aβ oligomers reduce BDNF expression via HDAC nuclear translocation. J. Neurosci. 35, 7538–7551 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ferrante, F. et al. HDAC3 functions as a positive regulator in Notch signal transduction. Nucleic Acids Res. 48, 3496–3512 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, S.-I. et al. APOE4-carrying human astrocytes oversupply cholesterol to promote neuronal lipid raft expansion and Aβ generation. Stem Cell Reports 16, 2128–2137 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Obniski, R., Sieber, M. & Spradling, A. C. Dietary lipids modulate Notch signaling and influence adult intestinal development and metabolism in Drosophila. Dev. Cell 47, 98–111 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bu, G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 10, 333–344 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Langlois, B. et al. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways. PLoS ONE 5, e11584 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Bian, W. et al. Low-density-lipoprotein-receptor-related protein 1 mediates Notch pathway activation. Dev. Cell 56, 2902–2919 (2021).Article 
CAS 
PubMed 

Google Scholar 
Delio, M. et al. Spectrum of elastin sequence variants and cardiovascular phenotypes in 49 patients with Williams–Beuren syndrome. Am. J. Med. Genet. A 161A, 527–533 (2013).Article 
PubMed 

Google Scholar 
Min, S. et al. Genetic diagnosis and the severity of cardiovascular phenotype in patients with elastin arteriopathy. Circ. Genom. Precis. Med. 13, e002971 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Del Pasqua, A. et al. New findings concerning cardiovascular manifestations emerging from long-term follow-up of 150 patients with the Williams–Beuren–Beuren syndrome. Cardiol. Young 19, 563–567 (2009).Article 
PubMed 

Google Scholar 
Callewaert, B. et al. Comprehensive clinical and molecular analysis of 12 families with type 1 recessive cutis laxa. Hum. Mutat. 34, 111–121 (2013).Article 
CAS 
PubMed 

Google Scholar 
Andiran, N., Sarikayalar, F., Saraçlar, M. & Cağlar, M. Autosomal recessive form of congenital cutis laxa: more than the clinical appearance. Pediatr. Dermatol. 19, 412–414 (2002).Article 
PubMed 

Google Scholar 
Mauskar, A., Shanbag, P., Ahirrao, V. & Nagotkar, L. Congenital cutis laxa. Ann. Saudi Med. 30, 167–169 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Hinz, B. et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am. J. Pathol. 180, 1340–1355 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hinz, B. The myofibroblast: paradigm for a mechanically active cell. J. Biomech. 43, 146–155 (2010).Article 
PubMed 

Google Scholar 
Noseda, M. et al. Smooth muscle α-actin is a direct target of Notch/CSL. Circ. Res. 98, 1468–1470 (2006).Article 
CAS 
PubMed 

Google Scholar 
Klingberg, F., Hinz, B. & White, E. S. The myofibroblast matrix: implications for tissue repair and fibrosis. J. Pathol. 229, 298–309 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Neri, T. et al. Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nat. Commun. 10, 1929 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Cheng, L. et al. Generation and characterization of cardiac valve endothelial-like cells from human pluripotent stem cells. Commun. Biol. 4, 1039 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Skoglund, K., Rosengren, A., Lappas, G., Fedchenko, M. & Mandalenakis, Z. Long-term survival in patients with isolated pulmonary valve stenosis: a not so benign disease? Open Heart 8, e001836 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Warboys, C. M., Ghim, M. & Weinberg, P. D. Understanding mechanobiology in cultured endothelium: a review of the orbital shaker method. Atherosclerosis 285, 170–177 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gu, M. et al. Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers. Cell Stem Cell 20, 490–504 (2017).Article 
CAS 
PubMed 

Google Scholar 
Miao, Y. et al. Cycloheximide (CHX) chase assay to examine protein half-life. Bio Protoc. 13, e4690 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tran, H. T. N. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xie, C. et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles