Synthesis of a highly thermostable insulin by phenylalanine conjugation at B29 Lysine

Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J. 12, 141–146 (1922).CAS 
PubMed 
PubMed Central 

Google Scholar 
The History of a Wonderful Thing We Call Insulin. American Diabetes Association https://www.diabetes.org/blog/history-wonderful-thing-we-call-insulin (2019).Facts & figures. International Diabetes Federation https://idf.org/about-diabetes/diabetes-facts-figures/ (2023).Brange, J., Langkj\sgmaelig;r, L., Havelund, S. & Vølund, A. Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations. Pharm. Res. 9, 715–726 (1992).Article 
CAS 
PubMed 

Google Scholar 
Brange, J., Havelund, S. & Hougaard, P. Chemical stability of insulin. 2. Formation of higher molecular weight transformation products during storage of pharmaceutical preparations. Pharm. Res. J. Am. Assoc. Pharm. Sci. 9, 727–734 (1992).CAS 

Google Scholar 
Weiss, M. Insulin analogues containing penta-fluoro-phenylalanine at position B24. US patent US 9200053 B2 (2015).Groenning, M., Frokjaer, S. & Vestergaard, B. Formation mechanism of insulin fibrils and structural aspects of the insulin fibrillation process. Curr. Protein Pept. Sci. 10, 509–528 (2009).Article 
CAS 
PubMed 

Google Scholar 
Nielsen, L. et al. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40, 6036–6046 (2001).Article 
CAS 
PubMed 

Google Scholar 
Oliva, A., Fariña, J. B. & Llabrés, M. Influence of temperature and shaking on stability of insulin preparations: degradation kinetics. Int. J. Pharm. 143, 163–170 (1996).Article 
CAS 

Google Scholar 
Nakamura, M. et al. Extreme adhesion activity of amyloid fibrils induces subcutaneous insulin resistance. Diabetes 68, 609–616 (2019).Article 
CAS 
PubMed 

Google Scholar 
Nilsson, M. R. Insulin amyloid at injection sites of patients with diabetes. Amyloid 23, 139–147 (2016).Article 
CAS 
PubMed 

Google Scholar 
Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).Article 
CAS 
PubMed 

Google Scholar 
Gong, H. et al. Effects of several quinones on insulin aggregation. Sci. Rep. 4, 5648–5656 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Levy-Sakin, M., Shreberk, M., Daniel, Y. & Gazit, E. Targeting insulin amyloid assembly by small aromatic molecules: toward rational design of aggregation inhibitors. Islets 1, 210–215 (2009).Article 
PubMed 

Google Scholar 
Ivanova, M. I., Sievers, S. A., Sawaya, M. R., Wall, J. S. & Eisenberg, D. Molecular basis for insulin fibril assembly. Proc. Natl Acad. Sci. USA 106, 18990–18995 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chowdhury, S. R., Mondal, S. & Iyer, P. K. Blocking oligomeric insulin amyloid fibrillation via perylenebisimides containing dipeptide tentacles. ACS Biomater. Sci. Eng. 4, 4076–4083 (2018).Article 

Google Scholar 
Mishra, N. K., Joshi, K. B. & Verma, S. Inhibition of human and bovine insulin fibril formation by designed peptide conjugates. Mol. Pharm. 10, 3903–3912 (2013).Article 
CAS 
PubMed 

Google Scholar 
Mishra, N. K., Krishna Deepak, R. N. V., Sankararamakrishnan, R. & Verma, S. Controlling in vitro insulin amyloidosis with stable peptide conjugates: a combined experimental and computational study. J. Phys. Chem. B 119, 15395–15406 (2015).Article 
CAS 
PubMed 

Google Scholar 
Sen, S. et al. Blended polar/nonpolar peptide conjugate interferes with human insulin amyloid-mediated cytotoxicity. Bioorg. Chem. 111, 104899 (2021).Article 
CAS 
PubMed 

Google Scholar 
Skaat, H., Belfort, G. & Margel, S. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulinamyloid fibril formation. Nanotechnology 20, 225106 (2009).Article 
PubMed 

Google Scholar 
Vilasi, S., Iannuzzi, C., Portaccio, M., Irace, G. & Sirangelo, I. Effect of trehalose on W7FW14F apomyoglobin and insulin fibrillization: new insight into inhibition activity. Biochemistry 47, 1789–1796 (2008).Article 
CAS 
PubMed 

Google Scholar 
Mari, E. et al. Trehalose effect on the aggregation of model proteins into amyloid fibrils. Life 10, 60 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, S. H., Dong, X. Y. & Sun, Y. Effect of (-)-epigallocatechin-3-gallate on human insulin fibrillation/aggregation kinetics. Biochem. Eng. J. 63, 38–49 (2012).Article 
CAS 

Google Scholar 
Mukherjee, M., Jana, J. & Chatterjee, S. A small molecule impedes insulin fibrillation: another new role of phenothiazine derivatives. ChemistryOpen 7, 68–79 (2018).Article 
CAS 
PubMed 

Google Scholar 
Chernii, S. et al. Study of tetraphenylporphyrins as modifiers of insulin amyloid aggregation. J. Mol. Recognit. 33, e2811 (2019).Article 
PubMed 

Google Scholar 
Kovalska, V. et al. The impact of binding of macrocyclic metal complexes on amyloid fibrillization of insulin and lysozyme. J. Mol. Recognit. 30, e2622 (2017).Article 

Google Scholar 
Mauri, S., Volk, M., Byard, S., Berchtold, H. & Arnolds, H. Stabilization of insulin by adsorption on a hydrophobic silane self- assembled monolayer. Langmuir 31, 8892–8900 (2015).Article 
CAS 
PubMed 

Google Scholar 
Weber, C., Kammerer, D., Streit, B. & Licht, A. H. Phenolic excipients of insulin formulations induce cell death, pro-inflammatory signaling and MCP-1 release. Toxicol. Rep. 2, 194–202 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wheeler, B. J. & Taylor, B. J. Successful management of allergy to the insulin excipient metacresol in a child with type 1 diabetes: a case report. J. Med. Case Rep. 6, 263 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Rege, N. K. et al. Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic–aromatic interactions. J. Biol. Chem. 293, 10895–10910 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pandyarajan, V. et al. Contribution of tyrb26to the function and stability of insulin structure-activity relationships at a conserved hormone-receptor interface. J. Biol. Chem. 291, 12978–12990 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lieblich, S. A. et al. 4S-hydroxylation of insulin at ProB28 accelerates hexamer dissociation and delays fibrillation. J. Am. Chem. Soc. 139, 8384–8387 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pandyarajan, V. et al. Biophysical optimization of a therapeutic protein by nonstandard mutagenesis: studies of an iodo-insulin derivative. J. Biol. Chem. 289, 23367–23381 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weiss, M. Halogen-stabilized insulin. US patent US8921313B2 (2014).Vinther, T. N. et al. Additional disulfide bonds in insulin: prediction, recombinant expression, receptor binding affinity, and stability. Protein Sci. 24, 779–788 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Karas, J. A. et al. Total chemical synthesis of an intra-a-chain cystathionine human insulin analogue with enhanced thermal stability. Angew. Chem. Int. Ed. 55, 14743–14747 (2016).Article 
CAS 

Google Scholar 
Mao, R., Chen, Y., Chi, Z. & Wang, Y. Insulin and its single-chain analogue. Appl. Microbiol. Biotechnol. 103, 8737–8751 (2019). at.Article 
CAS 
PubMed 

Google Scholar 
Hua, Q. X. et al. Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications. J. Biol. Chem. 283, 14703–14716 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Glidden, M. D. et al. An ultra-stable single-chain insulin analog resists thermal inactivation and exhibits biological signaling duration equivalent to the native protein. J. Biol. Chem. 293, 47–68 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kjeldsen, T., Schlein, M., Sorenson, A. R. & Madsen, P. Single-chain insulin. US patent US8883449B2 (2014).Hossain, M. A. et al. Total chemical synthesis of a nonfibrillating human glycoinsulin. J. Am. Chem. Soc. 142, 1164–1169 (2020).Article 
CAS 
PubMed 

Google Scholar 
Xiong, X. et al. Novel four-disulfide insulin analog with high aggregation stability and potency. Chem. Sci. 11, 195–200 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chen, H. et al. Selective lysine modification of native peptides via aza-Michael addition. Org. Biomol. Chem. 15, 7339–7345 (2017).Article 
CAS 
PubMed 

Google Scholar 
Boga, S. B. et al. Site-selective synthesis of insulin azides and bioconjugates. Bioconjug. Chem. 30, 1127–1132 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kamelnia, R. et al. Chemical modification of the amino groups of human insulin: investigating structural properties and amorphous aggregation of acetylated species. Protein J. 42, 383–398 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zaykov, A. N., Mayer, J. P. & Dimarchi, R. D. Pursuit of a perfect insulin. Nat. Rev. Drug Discov. 15, 425–439 (2016).Article 
CAS 
PubMed 

Google Scholar 
Rege, N. K. et al. Evolution of insulin at the edge of foldability and its medical implications. Proc. Natl Acad. Sci. USA 117, 29618–29628 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, C., Lu, D. & Liu, Z. How PEGylation enhances the stability and potency of insulin: a molecular dynamics simulation. Biochemistry 50, 2585–2593 (2011).Article 
CAS 
PubMed 

Google Scholar 
Jia, Y., Fernandez, A. & Sampath, J. PEGylation of insulin and lysozyme to stabilize against thermal denaturation: a molecular dynamics simulation study. J. Phys. Chem. B 127, 6856–6866 (2023).Article 
CAS 
PubMed 

Google Scholar 
Hinds, K. et al. Synthesis and characterization of poly(ethylene glycol)-insulin conjugates. Bioconjug. Chem. 11, 195–201 (2000).Article 
CAS 
PubMed 

Google Scholar 
Rasmussen, T., Kasimova, M. R., Jiskoot, W. & van de Weert, M. The chaperone-like protein α-crystallin dissociates insulin dimers and hexamers. Biochemistry 48, 9313–9320 (2009).Article 
CAS 
PubMed 

Google Scholar 
Huus, K., Havelund, S., Olsen, H. B., Van De Weert, M. & Frokjaer, S. Thermal dissociation and unfolding of insulin. Biochemistry 44, 11171–11177 (2005).Article 
CAS 
PubMed 

Google Scholar 
Yang, J. et al. Insulin increases D5 dopamine receptor expression and function in renal proximal tubule cells from wistar-kyoto rats. Am. J. Hypertens. 22, 770–776 (2009).Article 
CAS 
PubMed 

Google Scholar 
Purushottam, L. et al. Single-site glycine-specific labeling of proteins. Nat. Commun. 10, 1–9 (2019).Article 
CAS 

Google Scholar 
Cohen, P. The twentieth century struggle to decipher insulin signalling. Nat. Rev. Mol. Cell Biol. 7, 867–873 (2006).Article 
CAS 
PubMed 

Google Scholar 
Alfa, R. W. & Kim, S. K. Using Drosophila to discover mechanisms underlying type 2 diabetes. DMM. Dis. Model. Mech. 9, 365–376 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Graham, P. & Pick, L. Drosophila as a model for diabetes and diseases of insulin resistance. Curr. Top. Dev. Biol. 121, 397–419 (2017).Article 
CAS 
PubMed 

Google Scholar 
Goberdhan, D. C. I. & Wilson, C. The functions of insulin signaling: size isn’t everything, even in Drosophila. Differentiation 71, 375–397 (2003).Article 
CAS 
PubMed 

Google Scholar 
Hirabayashi, S., Baranski, T. J. & Cagan, R. L. Transformed drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell 154, 664–675 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brogiolo, W. et al. An evolutionarily conserved function of the drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221 (2001).Article 
CAS 
PubMed 

Google Scholar 
Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).Article 
CAS 
PubMed 

Google Scholar 
Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M. & Edgar, B. A. Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2, 239–249 (2002).Article 
CAS 
PubMed 

Google Scholar 
Gray, A., Van Der Kaay, J. & Downes, C. P. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate. Biochem. J. 344, 929–936 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Like, A. A. & Rossini, A. A. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193, 415–417 (1976).Article 
CAS 
PubMed 

Google Scholar 
Heinemann, L., Braune, K., Carter, A., Zayani, A. & Krämer, L. A. Insulin storage: a critical reappraisal. J. Diabetes Sci. Technol. 15, 147–159 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kjeldsen, T. B. et al. Engineering of orally available, ultralong-acting insulin analogues: discovery of OI338 and OI320. J. Med. Chem. 64, 616–628 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kjeldsen, T. B. et al. Molecular engineering of insulin icodec, the first acylated insulin analog for once-weekly administration in humans. J. Med. Chem. 64, 8942–8950 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jonassen, I. et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm. Res. 29, 2104–2114 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bocian, W. et al. Structure of human insulin monomer in water/acetonitrile solution. J. Biomol. NMR 40, 55–64 (2008).Article 
CAS 
PubMed 

Google Scholar 
Anandakrishnan, R., Aguilar, B. & Onufriev, A. V. H. ++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 40, W537–W541 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).Article 
CAS 

Google Scholar 
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles