Enhanced elastic stability of a topologically disordered crystalline metal–organic framework

Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).Article 
CAS 

Google Scholar 
O’Keeffe, M. Nets, tiles, and metal–organic frameworks. APL Mater. 2, 124106 (2014).Article 

Google Scholar 
Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).Article 
CAS 
PubMed 

Google Scholar 
Tan, J.-C. & Cheetham, A. K. Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem. Soc. Rev. 40, 1059–1080 (2011).Article 
CAS 
PubMed 

Google Scholar 
Coudert, F.-X. Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).Article 
CAS 

Google Scholar 
Ortiz, A. U., Boutin, A., Fuchs, A. H. & Coudert, F.-X. Anisotropic elastic properties of flexible metal–organic frameworks: how soft are soft porous crystals? Phys. Rev. Lett. 109, 195502 (2012).Article 
PubMed 

Google Scholar 
Li, W. et al. Negative linear compressibility of a metal–organic framework. J. Am. Chem. Soc. 134, 11940–11943 (2012).Article 
CAS 
PubMed 

Google Scholar 
Krause, S. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348–352 (2016).Article 
CAS 
PubMed 

Google Scholar 
Collings, I. E. & Goodwin, A. L. Metal–organic frameworks under pressure. J. Appl. Phys. 126, 181101 (2019).Article 

Google Scholar 
Chapman, K. W., Halder, G. J. & Chupas, P. J. Pressure-induced amorphization and porosity modification in a metal–organic framework. J. Am. Chem. Soc. 131, 17546–17547 (2009).Article 
CAS 
PubMed 

Google Scholar 
Mouhat, F. & Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014).Article 

Google Scholar 
Wu, H., Yildirim, T. & Zhou, W. Exceptional mechanical stability of highly porous zirconium metal–organic framework UiO-66 and its important implications. J. Phys. Chem. Lett. 4, 925–930 (2013).Article 
CAS 
PubMed 

Google Scholar 
Banlusan, K. & Strachan, A. First-principles study of elastic mechanical responses to applied deformation of metal-organic frameworks. J. Chem. Phys. 146, 184705 (2017).Article 

Google Scholar 
Bennett, T. D. et al. Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study. Phys. Chem. Chem. Phys. 18, 2192–2201 (2016).Article 
CAS 
PubMed 

Google Scholar 
Yot, P. G. et al. Exploration of the mechanical behavior of metal organic frameworks UiO-66(Zr) and MIL-125(Ti) and their NH2 functionalized versions. Dalton Trans. 45, 4283–4288 (2016).Article 
CAS 
PubMed 

Google Scholar 
Tan, J.-C. et al. Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework. Phys. Rev. Lett. 108, 095502 (2012).Article 
PubMed 

Google Scholar 
Moghadam, P. Z. et al. Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter 1, 219–234 (2019).Article 

Google Scholar 
Qin, Z. & Buehler, M. J. Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4, 2187 (2013).Article 
PubMed 

Google Scholar 
Fernandes, M. C., Aizenberg, J., Weaver, J. C. & Bertoldi, K. Mechanically robust lattices inspired by deep-sea glass sponges. Nat. Mater. 20, 237–241 (2021).Article 
CAS 
PubMed 

Google Scholar 
Liu, K., Sun, R. & Araio, C. Growth rules for irregular architected materials with programmable properties. Science 377, 975–981 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yang, T. et al. A damage-tolerant, dual-scale, single-crystalline microlattice in the knobby starfish, Protoreaster nodosus. Science 375, 647–652 (2022).Article 
CAS 
PubMed 

Google Scholar 
Heyde, A., Guo, L., Jost, C., Theraulaz, G. & Mahadevan, L. Self-organized biotectonics of termite nests. Proc. Natl Acad. Sci. USA 118, e2006985118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Senhora, F. V., Sanders, E. D. & Paulino, G. H. Optimally-tailored spinodal architected materials for multiscale design and manufacturing. Adv. Mater. 34, 2109304 (2022).Article 
CAS 

Google Scholar 
Meekel, E. G. et al. Truchet-tile structure of a topologically aperiodic metal–organic framework. Science 379, 357–361 (2023).Article 
CAS 
PubMed 

Google Scholar 
Smith, C. S. The tiling patterns of Sebastien Truchet and the topology of structural hierarchy. Leonardo 20, 373–385 (1987).Article 

Google Scholar 
McKellar, S. C. & Moggach, S. A. Structural studies of metal–organic frameworks under high pressure. Acta Crystallogr. Sect. B: Struct. Sci. 71, 587–607 (2015).Article 
CAS 

Google Scholar 
Hu, Y. H. & Zhang, L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Phys. Rev. B 81, 174103 (2010).Article 

Google Scholar 
Pallach, R. et al. Frustrated flexibility in metal-organic frameworks. Nat. Commun. 12, 4097 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baxter, S. J. et al. Recovery of MOF-5 from extreme high-pressure conditions facilitated by a modern pressure transmitting medium. Chem. Mater. 34, 768–776 (2022).Article 
CAS 

Google Scholar 
Reynolds, E. M. et al. Function from configurational degeneracy in disordered framework materials. Faraday Discuss. 225, 241–254 (2021).Article 
CAS 
PubMed 

Google Scholar 
Horrigan, E. J. et al. Simulated optimisation of disordered structures with negative Poisson’s ratios. Mech. Mater. 41, 919–927 (2009).Article 

Google Scholar 
Yokogawa, K., Murata, K., Yoshino, H. & Aoyama, S. Solidification of high-pressure medium Daphne 7373. J. Appl. Phys. 46, 3636–3639 (2007).Article 
CAS 

Google Scholar 
Rogge, S. M. J., Waroquier, M. & Van Speybroeck, V. Reliably modeling the mechanical stability of rigid and flexible metal–organic frameworks. Acc. Chem. Res. 51, 138–148 (2018).Article 
CAS 
PubMed 

Google Scholar 
Graham, A. J., Allan, D. R., Muszkiewicz, A., Morrison, C. A. & Moggach, S. A. The effect of high pressure on MOF-5: guest-induced modification of pore size and content at high pressure. Angew. Chem. Int. Ed. 50, 11138–11141 (2011).Article 
CAS 

Google Scholar 
Anderson, O. L., Dubrovinsky, L., Sakexna, S. K. & LeBihan, T. Experimental vibrational Grüneisen ratio values for ε-iron up to 330 GPa at 300 K. Geophys. Res. Lett. 28, 399–402 (2001).Article 
CAS 

Google Scholar 
Grüneisen, E. in Thermische Eigenschaften der Stoffe, Handbuch der Physik Vol. X (eds. Geiger, H. & Scheel, K.) 1–59 (Springer, 1926).Greve, B. K. et al. Pronounced negative thermal expansion from a simple structure: cubic ScF3. J. Am. Chem. Soc. 132, 15496–15498 (2010).Article 
CAS 
PubMed 

Google Scholar 
Wei, Z. et al. Colossal pressure-induced softening in scandium fluoride. Phys. Rev. Lett. 124, 255502 (2020).Article 
CAS 
PubMed 

Google Scholar 
Dove, M. T. et al. Quantitative understanding of negative thermal expansion in scandium trifluoride from neutron total scattering measurements. Phys. Rev. B 102, 094105 (2020).Article 
CAS 

Google Scholar 
Zhou, W. & Yildirim, T. Lattice dynamics of metal-organic frameworks: neutron inelastic scattering and first-principles calculations. Phys. Rev. B 74, 180301(R) (2006).Article 

Google Scholar 
Bahr, D. F. et al. Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals. Phys. Rev. B 76, 184106 (2007).Article 

Google Scholar 
Gaillac, R., Pullumbi, P. & Coudert, F.-X. ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys.: Condens. Matter 28, 275201 (2016).PubMed 

Google Scholar 
Bhogra, M. & Waghmare, U. V. Flat phonon band-based mechanism of amorphization of MOF-5 at ultra-low pressures. J. Phys. Chem. C 125, 14924–14931 (2021).Article 
CAS 

Google Scholar 
Bhogra, M., Goodwin, A. L., Cheetham, A. K. & Waghmare, U. V. Quantifying the intrinsic mechanical flexibility of crystalline materials. Phys. Rev. B 108, 214106 (2023).Article 
CAS 

Google Scholar 
Collings, I. E., Tucker, M. G., Keen, D. A. & Goodwin, A. L. Static disorder and local structure in zinc (ii) isonicotinate, a quartzlike metal–organic framework. Z. Krist. Cryst. Mater. 227, 313–320 (2012).Article 
CAS 

Google Scholar 
Lee, S., Bürgi, H.-B., Alshmimri, S. A. & Yahgi, O. M. Impact of disordered guest–framework interactions on the crystallography of metal–organic frameworks. J. Am. Chem. Soc. 140, 8958–8964 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ortiz, A. U., Boutin, A., Fuchs, A. H. & Coudert, F.-X. Metal–organic frameworks with wine-rack motif: what determines their flexibility and elastic properties? J. Chem. Phys. 138, 174703 (2013).Article 
PubMed 

Google Scholar 
Adamson, J. et al. Competing hydrostatic compression mechanisms in nickel cyanide. Phys. B: Condens. Matter 479, 35–40 (2015).Article 
CAS 

Google Scholar 
Duyker, S. G., Peterson, V. K., Kearley, G. J., Studer, A. J. & Kepert, C. J. Extreme compressibility in LnFe(CN)6 coordination framework materials via molecular gears and torsion springs. Nat. Chem. 8, 270–275 (2016).Article 
CAS 
PubMed 

Google Scholar 
Lehn, J.-M. & Eliseev, A. V. Dynamic combinatorial chemistry. Science 291, 2331–2332 (2001).Article 
CAS 
PubMed 

Google Scholar 
Jacobs, D. J. & Thorpe, M. F. Generic rigidity percolation: the pebble game. Phys. Rev. Lett. 75, 4051–4054 (1995).Article 
CAS 
PubMed 

Google Scholar 
Rogge, S. M. J., Borgmans, S. & Van Speybroeck, V. Absorbing stress via molecular crumple zones: strain engineering flexibility into the rigid UiO-66 material. Matter 6, 1435–1462 (2023).Article 
CAS 

Google Scholar 
Roth, N. & Goodwin, A. L. Tuning electronic and phononic states with hidden order in disordered crystals. Nat. Commun. 14, 4328 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thébaud, S., Lindsay, L. & Berlijn, T. Breaking Rayleigh’s law with spatially correlated disorder to control phonon transport. Phys. Rev. Lett. 131, 026301 (2023).Article 
PubMed 

Google Scholar 
Cowley, R. A. Acoustic phonon instabilities and structural phase transitions. Phys. Rev. B 13, 4877–4885 (1976).Article 
CAS 

Google Scholar 
Moggach, S. A., Allan, D. R., Parsons, S. & Warren, J. E. Incorporation of a new design of backing seat and anvil in a Merrill–Bassett diamond anvil cell. J. Appl. Crystallogr. 41, 249–251 (2008).Article 
CAS 

Google Scholar 
Barnett, J. D., Block, S. & Piermarini, G. J. An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell. Rev. Sci. Instrum. 44, 1–9 (1973).Article 

Google Scholar 
CrysAlisPro (Oxford Diffraction/Agilent Technologies, 2014).Lertkiattrakul, M., Evans, M. L. & Cliffe, M. J. PASCal Python: a principal axis strain calculator. J. Open Source Softw. 8, 5556 (2023).Article 

Google Scholar 
Gale, J. D. & Rohl, A. L. The General Utility Lattice Program (GULP). Mol. Simul. 29, 291–341 (2003).Article 
CAS 

Google Scholar 
Rogge, S. M. J., Waroquier, M. & Van Speybroeck, V. Reliably modelling the mechanical stability of rigid and flexible metal–organic frameworks. Acc. Chem. Res. 51, 138–148 (2018).Article 
CAS 
PubMed 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles