A possible path to persistent re-entry waves at the outlet of the left pulmonary vein

Nattel S. New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002).CAS 
PubMed 

Google Scholar 
Johnsen, S. ørenPaaske, Dalby, LeneWorsaae, Täckström, T., Olsen, J. & Fraschke, A. Cost of illness of atrial fibrillation: a nationwide study of societal impact. BMC Health Serv. Res. 17, 1–8 (2017).
Google Scholar 
Tsao, C. W. et al. Heart disease and stroke statistics?2023 update: a report from the american heart association. Circulation 147, e93–e621 (2023).PubMed 

Google Scholar 
Chugh, S. S., Roth, G. A., Gillum, R. F. & Mensah, G. A. Global burden of atrial fibrillation in developed and developing nations. Glob. Heart 9, 113–119 (2014).PubMed 

Google Scholar 
Adderley, N.J., Ryan, R., Nirantharakumar, K. & Marshall, T. Prevalence and treatment of atrial fibrillation in UK general practice from 2000 to 2016. Heart 105, 27–33 (2019).PubMed 

Google Scholar 
Nattel, S. & Opie, L. H. Controversies in atrial fibrillation. Lancet 367, 262–272 (2006).PubMed 

Google Scholar 
Nattel, S. & Dobrev, D. Controversies about atrial fibrillation mechanisms: aiming for order in chaos and whether it matters. Circulation Res. 120, 1396–1398 (2017).CAS 
PubMed 

Google Scholar 
Martins R. P. et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation 129, 1472–1482 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
Dobrev, D. & Wehrens, XanderH. T. Calcium-mediated cellular triggered activity in atrial fibrillation. J. Physiol. 595, 4001–4008 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
Nattel S. Changes in the atrial transcriptome and atrial fibrillation: susceptibility, persistence, causes, and consequences. Circulation: Arrhythmia Electrophysiol. 8, 5–7 (2015).
Google Scholar 
Deshmukh A. et al. Left atrial transcriptional changes associated with atrial fibrillation susceptibility and persistence. Circulation: Arrhythmia Electrophysiol. 8, 32–41 (2015).CAS 

Google Scholar 
Nattel S. et al. Early management of atrial fibrillation to prevent cardiovascular complications. Eur. Heart J. 35, 1448–1456 (2014).PubMed 

Google Scholar 
Haissaguerre, M. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).CAS 
PubMed 

Google Scholar 
Staerk, L., Sherer, J. A., Ko, D., Benjamin, E. J. & Helm, R. H. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circulation Res. 120, 1501–1517 (2017).CAS 
PubMed 

Google Scholar 
Kawai S. Location and coupling interval of an ectopic excitation determine the initiation of atrial fibrillation from the pulmonary veins. J. Cardiovasc. Electrophysiol. 33, 629–637 (2022).PubMed 
PubMed Central 

Google Scholar 
Sun, H., Chartier, D., Leblanc, N. & Nattel, S. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Cardiovasc. Res. 49, 751–761 (2001).CAS 
PubMed 

Google Scholar 
Bosch, R. F. Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces ICa,L and Ito in rapid atrial pacing in rabbits. J. Am. Coll. Cardiol. 41, 858–869 (2003).CAS 
PubMed 

Google Scholar 
Ji Q. et al. Expression changes of ionic channels in early phase of cultured rat atrial myocytes induced by rapid pacing. J. Cardiothorac. Surg. 8, 1–8 (2013).CAS 

Google Scholar 
Greiser, M., Lederer, W. J. & Schotten, U. Alterations of atrial Ca2+ handling as cause and consequence of atrial fibrillation. Cardiovasc. Res. 89, 722–733 (2011).CAS 
PubMed 

Google Scholar 
Yue L. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circulation Res. 81, 512–525 (1997).CAS 
PubMed 

Google Scholar 
Liu, Z., Golowasch, J., Marder, E. & Abbott, L. F. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J. Neurosci. 18, 2309–2320 (1998).CAS 
PubMed 
PubMed Central 

Google Scholar 
Golowasch, J., Casey, M., Abbott, L. F. & Marder, E. Network stability from activity-dependent regulation of neuronal conductances. Neural Comput. 11, 1079–1096 (1999).CAS 
PubMed 

Google Scholar 
O’Leary, T., Williams, A. H., Caplan, J. S. & Marder, E. Correlations in ion channel expression emerge from homeostatic tuning rules. Proc. Natl. Acad. Sci. 110, E2645–E2654 (2013).PubMed 
PubMed Central 

Google Scholar 
O’Leary, T., Williams, A. H., Franci, A. & Marder, E. Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 82, 809–821 (2014).PubMed 
PubMed Central 

Google Scholar 
Gorur-Shandilya, S., Marder, E. & O’Leary, T. Activity-dependent compensation of cell size is vulnerable to targeted deletion of ion channels. Sci. Rep. 10, 15989 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
Alonso, L. M., Rue, MaraC. P. & Marder, E. Gating of homeostatic regulation of intrinsic excitability produces cryptic long-term storage of prior perturbations. Proc. Natl. Acad. Sci. 120, e2222016120 (2023).PubMed 
PubMed Central 

Google Scholar 
Marom, S. and Marder, E. A biophysical perspective on the resilience of neuronal excitability across timescales. Nat. Rev. Neurosci. 1–13, 2023.Jaeger, K. H., Charwat, V., Wall, S., Healy, K. E. & Tveito, A. Do calcium channel blockers applied to cardiomyocytes cause increased channel expression resulting in reduced efficacy? NPJ Syst. Biol. Appl. 10, 22 (2024).CAS 
PubMed 
PubMed Central 

Google Scholar 
Fabiato, A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol.-Cell Physiol. 245, C1–C14 (1983).CAS 

Google Scholar 
Cannell, M. B., Cheng, H. & Lederer, W. J. The control of calcium release in heart muscle. Science 268, 1045–1049 (1995).CAS 
PubMed 

Google Scholar 
Rice, J. J., Jafri, M. S. & Winslow, R. L. Modeling gain and gradedness of Ca2+ release in the functional unit of the cardiac diadic space. Biophys.J. 77, 1871–1884 (1999).CAS 
PubMed 
PubMed Central 

Google Scholar 
Moise, N. & Weinberg, S. H. Emergent activity, heterogeneity, and robustness in a calcium feedback model of the sinoatrial node. Biophys. J. 122, 1613–1632 (2023).CAS 
PubMed 
PubMed Central 

Google Scholar 
Jæger, K. H., Edwards, A. G., Giles, W. R. & Tveito, A. Arrhythmogenic influence of mutations in a myocyte-based computational model of the pulmonary vein sleeve. Sci. Rep. 12, 7040 (2022).PubMed 
PubMed Central 

Google Scholar 
Wijffels, MauritsC. E. F., Kirchhof, CharlesJ. H. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation: a study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).CAS 
PubMed 

Google Scholar 
Knight, B. P. The pulmonary veins: Speedy recoveries and early discharges. J. Am. Coll. Cardiol. 51, 2161–2162 (2008).PubMed 

Google Scholar 
Rostock, T. Atrial fibrillation begets atrial fibrillation in the pulmonary veins: on the impact of atrial fibrillation on the electrophysiological properties of the pulmonary veins in humans. J. Am. Coll. Cardiol. 51, 2153–2160 (2008).PubMed 

Google Scholar 
Lu, Z. et al. Atrial fibrillation begets atrial fibrillation: autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circulation: Arrhythmia Electrophysiol. 1, 184–192 (2008).
Google Scholar 
Colman, M. A. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria. J. Phys. 591, 4249–4272 (2013).CAS 

Google Scholar 
Qi, XiaoYan Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circulation Res. 103, 845–854 (2008).CAS 
PubMed 

Google Scholar 
Denham, N. C. Calcium in the pathophysiology of atrial fibrillation and heart failure. Front. Physiol. 9, 1380 (2018).PubMed 
PubMed Central 

Google Scholar 
Nattel, S., Maguy, A., Le Bouter, S. & Yeh, Yung-Hsin Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Phys. Rev. 87, 425–456 (2007).CAS 

Google Scholar 
Jæger, K. H. & Tveito, A. The simplified Kirchhoff network model (SKNM): a cell-based reaction–diffusion model of excitable tissue. Sci. Rep. 13, 16434 (2023).PubMed 
PubMed Central 

Google Scholar 
Franzone, P. C., Pavarino, L. F., and Scacchi, S.Mathematical Cardiac Electrophysiology, volume 13. Springer, 2014.Jæger, K. H. and Tveito, A. Differential equations for studies in computational electrophysiology. Simula SpringerBriefs on Computing, 2023.Neu, J. C. & Krassowska, W. Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21, 137–199 (1993).CAS 
PubMed 

Google Scholar 
Henriquez, C. S. and Ying, W. The bidomain model of cardiac tissue: from microscale to macroscale. Cardiac Bioelectric Therapy: Mechanisms and Practical Implications, 211–223 (2021).Jæger, K. H. and Tveito, A. Deriving the bidomain model of cardiac electrophysiology from a cell-based model; properties and comparisons. Front. Phys. 12, 2439 (2022).Jæger, K. H., Edwards, A. G., Giles, W. R. & Tveito, A. From millimeters to micrometers; re-introducing myocytes in models of cardiac electrophysiology. Front. Phys. 12, 763584 (2021).
Google Scholar 
Jæger, K. H. & Tveito, A. Efficient, cell-based simulations of cardiac electrophysiology; the Kirchhoff Network Model (KNM). NPJ Syst. Biol. Appl. 9, 25 (2023).PubMed 
PubMed Central 

Google Scholar 
Stinstra, J. G., Roberts, S. F., Pormann, J. B., MacLeod, R. S., and Henriquez, C. S. A model of 3D propagation in discrete cardiac tissue. In Computers in Cardiology, 2006, pages 41–44. IEEE, 2006.Tveito, A., Jæger, K. H., Kuchta, M., Mardal, K.A. & Rognes, M. E. A cell-based framework for numerical modeling of electrical conduction in cardiac tissue. Front. Phys. 5, 48 (2017).
Google Scholar 
Jæger, K. H. and Tveito, A. Derivation of a cell-based mathematical model of excitable cells. In Modeling Excitable Tissue, pages 1–13. Springer, Cham, 2020.Jæger, K. H., Trotter, J. D., Cai, X., Arevalo, H., and Tveito, A. Evaluating computational efforts and physiological resolution of mathematical models of cardiac tissue. Preprint at bioRxiv https://doi.org/10.1038/s41598-024-67431-w (2024).Kucera, J. P., Rohr, S. & Rudy, Y. Localization of sodium channels in intercalated disks modulates cardiac conduction. Circulation Res. 91, 1176–1182 (2002).CAS 
PubMed 

Google Scholar 
Balycheva, M., Faggian, G., Glukhov, A. V. & Gorelik, J. Microdomain–specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys.Rev. 7, 43–62 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
Veeraraghavan, R. Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study. Pflügers Arch.-Eur. J. Physiol. 467, 2093–2105 (2015).CAS 

Google Scholar 
Jæger, K. H., Edwards, A. G., McCulloch, A. & Tveito, A. Properties of cardiac conduction in a cell-based computational model. PLoS Comput. Biol. 15, e1007042 (2019).PubMed 
PubMed Central 

Google Scholar 
Hustad, K. G., Ivanovic, E., Recha, A. L., and Sakthivel, A. A. Conduction velocity in cardiac tissue as function of ion channel conductance and distribution. Computational Physiology: Simula Summer School 2021-Student Reports, pages 41–50, 2021.Ivanovic, E. and Kucera, J. P. Localization of Na + + channel clusters in narrowed perinexi of gap junctions enhances cardiac impulse transmission via ephaptic coupling: a model study. J. Phys. 599(21):4779–4811 (2021).Po, S. S. Rapid and stable re-entry within the pulmonary vein as a mechanism initiating paroxysmal atrial fibrillation. J. Am. Coll. Cardiol. 45, 1871–1877 (2005).PubMed 

Google Scholar 
Pagani, S. A computational study of the electrophysiological substrate in patients suffering from atrial fibrillation. Front. Phys. 12, 673612 (2021).CAS 

Google Scholar 
Tveito, A. & Lines, G. T. A condition for setting off ectopic waves in computational models of excitable cells. Math. Biosci. 213, 141–150 (2008).PubMed 

Google Scholar 
Xie, Y., Sato, D., Garfinkel, A., Qu, Z. & Weiss, J. N. So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophys. J. 99, 1408–1415 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
Stinstra, J., MacLeod, R. & Henriquez, C. Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level. Ann. Biomed. Eng. 38, 1399–1414 (2010).PubMed 
PubMed Central 

Google Scholar 
Tveito, A. An evaluation of the accuracy of classical models for computing the membrane potential and extracellular potential for neurons. Front. Comput. Neurosci. 11, 27 (2017).PubMed 
PubMed Central 

Google Scholar 
Jæger, K. H., Hustad, K. G., Cai, X. & Tveito, A. Efficient numerical solution of the EMI model representing the extracellular space (E), cell membrane (M) and intracellular space (I) of a collection of cardiac cells. Front. Phys. 8, 539 (2021).
Google Scholar 
Hocini, M. élèze Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation 105, 2442–2448 (2002).PubMed 

Google Scholar 
Yamane, T. Dilatation as a marker of pulmonary veins initiating atrial fibrillation. J. Interventional Card. Electrophysiol. 6, 245–249 (2002).
Google Scholar 
Ehrlich, J. R. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J. Phys. 551, 801–813 (2003).CAS 

Google Scholar 
Skasa, M., Jüngling, E., Picht, E., Schöndube, F. & Lückhoff, A. L-type calcium currents in atrial myocytes from patients with persistent and non-persistent atrial fibrillation. Basic Res. Cardiol. 96, 151–159 (2001).CAS 
PubMed 

Google Scholar 
Sundnes, J., Lines, GlennTerje & Tveito, A. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194, 233–248 (2005).PubMed 

Google Scholar 
Schroll, H. J., Lines, GlennTerje & Tveito, A. On the accuracy of operator splitting for the monodomain model of electrophysiology. Int. J. Comput. Math. 84, 871–885 (2007).
Google Scholar 
Anderson, R. MFEM: A modular finite element methods library. Comput.Math. Appl. 81, 42–74 (2021).
Google Scholar 
Anderson, R. et al. MFEM: A modular finite element methods library. Comput. Math. Appl. 81, 42–74 (2021).
Google Scholar 
Rush, S. & Larsen, H. A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. 4, 389–392 (1978).
Google Scholar 
Sundnes, J., Artebrant, R., Skavhaug, O. & Tveito, A. A second-order algorithm for solving dynamic cell membrane equations. IEEE Trans. Biomed. Eng. 56, 2546–2548 (2009).PubMed 

Google Scholar 
Hake, J., Finsberg, H., Hustad, Kristian Gregorius, and Bahij, G. Gotran – General ODE TRANslator, 2020. https://github.com/ComputationalPhysiology/gotran.Dagum, L. & Menon, R. OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55 (1998).
Google Scholar 
Jæger, K. H. and Tveito, A. Code for ’A possible path to persistent re-entry waves at the outlet of the left pulmonary vein’. ZENODO https://doi.org/10.5281/zenodo.11241241 (2024).

Hot Topics

Related Articles