Enhanced hydrogen evolution reaction activity through samarium-doped nickel phosphide (Ni2P) electrocatalyst

Golrokhifar, S., Shahroudi, A. & Habibzadeh, S. Cost-effective electrodeposited mixed transition metal electrocatalysts for efficient hydrogen evolution reaction. Electrocatalysis 1–8 (2024).Gong, Y., Xu, L. H., Li, J. & Shan, D. Confinement of transition metal phosphides in N, P-doped electrospun carbon fibers for enhanced electrocatalytic hydrogen evolution. J. Alloys Compd. 875, 159934 (2021).Article 
CAS 

Google Scholar 
Pu, Z. et al. Versatile route to fabricate precious-metal phosphide electrocatalyst for acid-stable hydrogen oxidation and evolution reactions. ACS Appl. Energy Mater. 12, 11737–11744 (2020).Article 
CAS 

Google Scholar 
Zhang, G. et al. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 138, 14686–14693 (2016).Article 
CAS 
PubMed 

Google Scholar 
Shahroudi, A., Esfandiari, M. & Habibzadeh, S. Nickel sulfide and phosphide electrocatalysts for hydrogen evolution reaction: challenges and future perspectives. RSC Adv. 12, 29440–29468 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pu, Z. et al. Transition-metal phosphides: activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 30, 2004009 (2020).Article 
CAS 

Google Scholar 
Jin, Y. et al. Preparation of mesoporous Ni2P nanobelts with high performance for electrocatalytic hydrogen evolution and supercapacitor. Int. J. Hydrog. Energy 43, 3697–3704 (2018).Article 
ADS 
CAS 

Google Scholar 
Yan, Q. et al. Hierarchical edge-rich nickel phosphide nanosheet arrays as efficient electrocatalysts toward hydrogen evolution in both alkaline and acidic conditions. ACS Sustain. Chem. Eng. 7, 7804–7811 (2019).Article 
CAS 

Google Scholar 
Yu, X. et al. “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wu, X. et al. Plasma enabled non-thermal phosphorization for nickel phosphide hydrogen evolution catalysts. Chem. Commun. 55, 4202–4205 (2019).Article 
CAS 

Google Scholar 
Pu, Z. et al. Phytic acid-derivative transition metal phosphides encapsulated in N, P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range. Nanoscale 9, 3555–3560 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gao, W. K. et al. In situ construction of surface defects of carbon-doped ternary cobalt-nickel-iron phosphide nanocubes for efficient overall water splitting. SCMs 9, 1285–1296 (2019).
Google Scholar 
Lu, S. S. et al. Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. J. Mater. Chem. A 7, 16859–16866 (2019).Article 
CAS 

Google Scholar 
Esfandiari, M., Habibzadeh, S. & Halladj, R. Efficient hierarchical ZIF-based electro/photocatalyst toward hydrogen generation and evolution. Int. J. Hydrog. Energy 64, 806–818 (2024).Article 
ADS 
CAS 

Google Scholar 
Liu, W. et al. Ferrum-molybdenum dual incorporated cobalt oxides as efficient bifunctional anti-corrosion electrocatalyst for seawater splitting. Appl. Catal. B 328, 122488 (2023).Article 
CAS 

Google Scholar 
Li, K., Tong, Y., He, J., Liu, X. Y. & Chen, P. Anion-modulated CoP electrode as bifunctional electrocatalyst for anion-exchange membrane hydrazine-assisted water electrolyser. Mater. Horiz. 10, 5277–5287 (2023).Article 
CAS 
PubMed 

Google Scholar 
Li, K., Zhou, G., Tong, Y., Ye, Y. & Chen, P. Interface engineering of a hierarchical p-modified Co/Ni3P heterostructure for highly efficient water electrolysis coupled with hydrazine degradation. ACS Sustain. Chem. Eng. 11, 14186–14196 (2023).Article 
CAS 

Google Scholar 
Li, K., He, J., Guan, X., Tong, Y., Ye, Y., Chen, L. & Chen, P. Phosphorus‐modified amorphous high‐entropy CoFeNiCrMn compound as high‐performance electrocatalyst for hydrazine‐assisted water electrolysis. Small 2302130 (2023).Feng, D., Liu, X. Y., Ye, R., Huang, W. & Tong, Y. Carbon-encapsulated Co2P/P-modified NiMoO4 hierarchical heterojunction as superior pH-universal electrocatalyst for hydrogen production. J. Colloid Interface Sci. 634, 693–702 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Feng, D., Ren, X. & Tong, Y. Rational design of tungsten-doped cobalt molybdate nanosheet arrays for highly active ethanol-assisted hydrogen production. Int. J. Hydrog. Energy (2023).Damhus, T., Hartshorn, R.M. & Hutton, A.T. Nomenclature of inorganic chemistry: IUPAC recommendations. Chem. Int. (2005).Yaroshevsky, A. A. Abundances of chemical elements in the Earth’s crust. Geochem. Int. 44, 48–55 (2006).Article 

Google Scholar 
Haxel, G. Rare earth elements: critical resources for high technology (Vol. 87, No. 2). US Department of the Interior, US Geological Survey (2002).Huang, H. & Zhu, J. J. The electrochemical applications of rare earth-based nanomaterials. Anlst 144, 6789–6811 (2019).CAS 

Google Scholar 
Gao, W., Wen, D., Ho, J. C. & Qu, Y. Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: A review for recent progress. Mater. Today Chem. 12, 266–281 (2019).Article 
CAS 

Google Scholar 
Gao, W. et al. Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy 38, 290–296 (2017).Article 
CAS 

Google Scholar 
Li, J., Zou, S., Liu, X., Lu, Y. & Dong, D. Electronically modulated CoP by Ce doping as a highly efficient electrocatalyst for water splitting. ACS Sustain. Chem. Eng. 8, 10009–10016 (2020).Article 
CAS 

Google Scholar 
Chen, T. et al. Ce-doped CoP nanoparticles embedded in carbon nanotubes as an efficient and durable catalyst for hydrogen evolution. Nanotechnology 31, 125402 (2020).Article 
ADS 
PubMed 

Google Scholar 
Liu, P. et al. Cerium and nitrogen doped CoP nanorod arrays for hydrogen evolution in all pH conditions. Sustain. Energy Fuels 3, 3344–3351 (2019).Article 
CAS 

Google Scholar 
Zhang, G., Wang, B., Bi, J., Fang, D. & Yang, S. Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 7, 5769–5778 (2019).Article 
CAS 

Google Scholar 
Morse, S. L. & Greene, N. D. Hydrogen overpotential on rare earth metals. Electrochim. Acta 12, 179–189 (1967).Article 
CAS 

Google Scholar 
Van Vucht, J. H., Kuijpers, F. & Bruning, H. C. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res. Rep 25, 133–140 (1970).
Google Scholar 
Miles, M. H. Evaluation of electrocatalysts for water electrolysis in alkaline solutions. J. Electroanal. Chem. Interfacial Electrochem. 60, 89–96 (1975).Article 
CAS 

Google Scholar 
Kitamura, T., Iwakura, C. & Tamura, H. Hydrogen evolution at LaNi5 and MmNi5 electrodes in alkaline solutions. Chem. Lett. 10, 965–966 (1981).Article 

Google Scholar 
Dominguez-Crespo, M. A., Torres-Huerta, A. M., Brachetti-Sibaja, B. & Flores-Vela, A. Electrochemical performance of Ni–RE (RE= rare earth) as electrode material for hydrogen evolution reaction in alkaline medium. Int. J. Hydrog. Energy 36, 135–151 (2011).Article 
ADS 
CAS 

Google Scholar 
Santos, D. M. F. et al. Electrocatalytic activity of nickel-cerium alloys for hydrogen evolution in alkaline water electrolysis. J. Electrochem. Soc. 161, 386 (2014).Article 

Google Scholar 
Rosalbino, F., Macciò, D., Saccone, A., Angelini, E. & Delfino, S. Fe–Mo–R (R= rare earth metal) crystalline alloys as a cathode material for hydrogen evolution reaction in alkaline solution. Int. J. Hydrog. Energy 36, 1965–1973 (2011).Article 
ADS 
CAS 

Google Scholar 
Wang, Q. et al. RE-doped (RE= La, Ce and Er) Ni 2 P porous nanostructures as promising electrocatalysts for hydrogen evolution reaction. Dalton Trans. 52, 1895–1901 (2023).Article 
CAS 
PubMed 

Google Scholar 
Xiong, K. et al. Cerium-incorporated Ni2P nanosheets for enhancing hydrogen production from overall water splitting and urea electrolysis. J. Alloys Compd. 912, 165234 (2022).Article 
CAS 

Google Scholar 
Zhang, H. et al. Cerium-doped nickel phosphide nanosheet arrays as highly efficient electrocatalysts for the hydrogen evolution reaction in acidic and alkaline conditions. ACS Appl. Energy Mater. 5, 10961–10972 (2022).Article 
CAS 

Google Scholar 
Shahroudi, A., Keivanimehr, F. & Habibzadeh, S. Cerium-doped nickel phosphide (Ni2P): Highly efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 48, 39885–39899 (2023).Article 
ADS 
CAS 

Google Scholar 
Bragg, W.H. & Bragg, W.L. The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Char. 88, 428–438 (1913).Clementi, E. & Raimondi, D. L. Atomic screening constants from SCF functions. J. Chem. Phys. 38, 2686–2689 (1963).Article 
ADS 
CAS 

Google Scholar 
Shahroudi, A. & Vahidi, O. Large-scale precipitation synthesis of α-alumina with poly aluminum chloride: Optimization of synthesis parameters. Int. J. Appl. Ceram. 20, 1526–1534 (2023).Article 
CAS 

Google Scholar 
Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).Article 
ADS 
CAS 

Google Scholar 
Norouzbeigi, R. & Edrissi, M. Preparation of nano alumina powder via combustion synthesis: Porous structure optimization via Taguchi L16 design. J. Am. Ceram. Soc. 94, 4052–4058 (2011).Article 
CAS 

Google Scholar 
Huang, H. et al. Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy 34, 472–480 (2017).Article 
CAS 

Google Scholar 
Huo, J. et al. Bifunctional iron nickel phosphide nanocatalysts supported on porous carbon for highly efficient overall water splitting. SM&T 22, 00117 (2019).
Google Scholar 
Zheng, H. et al. Cobalt-tuned nickel phosphide nanoparticles for highly efficient electrocatalysis. Appl. Surf. Sci. 479, 1254–1261 (2019).Article 
ADS 
CAS 

Google Scholar 
Ren, Q. et al. Hydrogen evolution reaction catalyzed by nickel/nickel phosphide nanospheres synthesized through electrochemical methods. Electrochim. Acta 298, 229–236 (2019).Article 
CAS 

Google Scholar 
Ramana, E. V. et al. Effect of samarium and vanadium co-doping on structure, ferroelectric and photocatalytic properties of bismuth titanate. RSC Adv. 7, 9680–9692 (2017).Article 
ADS 
CAS 

Google Scholar 
Pan, Y., Hu, W., Liu, D., Liu, Y. & Liu, C. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 13087–13094 (2015).Article 
CAS 

Google Scholar 
Wang, X., Kolen’ko, Y. V., Bao, X. Q., Kovnir, K. & Liu, L. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem. 127, 8306–8310 (2015).Article 
ADS 

Google Scholar 
Dinh, K. N. et al. O2 plasma and cation tuned nickel phosphide nanosheets for highly efficient overall water splitting. Nano Energy 54, 82–90 (2018).Article 
CAS 

Google Scholar 
Ledendecker, M., Schlott, H., Antonietti, M., Meyer, B. & Shalom, M. Experimental and theoretical assessment of ni-based binary compounds for the hydrogen evolution reaction. Adv. Energy Mater. 7, 1601735 (2017).Article 

Google Scholar 
Kumar, P. et al. Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions. Int. J. Hydrog. Energy 46, 622–632 (2021).Article 
ADS 
CAS 

Google Scholar 
Wang, J., Xu, F., Jin, H., Chen, Y. & Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 29, 1605838 (2017).Article 

Google Scholar 
Hosseinzadeh, N., Habibzadeh, S. & Halladj, R. A novel ternary Ti-V-Bi oxide photoelectrocatalyst in advanced oxidation process. J. Alloys Compd. 960, 171064 (2023).Article 
CAS 

Google Scholar 
Chen, T. et al. Fabrication of cerium-doped CoMoP/MoP@ C heterogeneous nanorods with high performance for overall water splitting. Energy Fuels 35, 14169–14176 (2021).Article 
CAS 

Google Scholar 
Pei, M. et al. Ni5P4-NiP2-Ni2P nanocomposites tangled with N-doped carbon for enhanced electrochemical hydrogen evolution in acidic and alkaline solutions. Catal. 12, 1650 (2022).Article 
CAS 

Google Scholar 
Zhao, G. et al. Heteroatom-doped MoSe2 nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting. Chem. Asian J. 14, 301–306 (2019).Article 
PubMed 

Google Scholar 
Ma, F. et al. One-step synthesis of Co-doped 1T-MoS2 nanosheets with efficient and stable HER activity in alkaline solutions. Mater. Chem. Phys. 244, 122642 (2020).Article 
CAS 

Google Scholar 
Kang, Q., Li, M., Shi, J., Lu, Q. & Gao, F. A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting. ACS Appl. Mater. Interfaces 12, 19447–19456 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. N. et al. FeCoP2 nanoparticles embedded in N and P Co-doped hierarchically porous carbon for efficient electrocatalytic water splitting. ACS Appl. Mater. Interfaces 13, 8832–8843 (2021).Article 
CAS 
PubMed 

Google Scholar 
Man, H. W. et al. Transition metal-doped nickel phosphide nanoparticles as electro-and photocatalysts for hydrogen generation reactions. Appl. Catal. B 242, 186–193 (2019).Article 
CAS 

Google Scholar 
Amorim, I. et al. Dual-phase CoP−CoTe2 nanowires as an efficient bifunctional electrocatalyst for bipolar membrane-assisted acid-alkaline water splitting. J. Chem. Eng. 420, 130454 (2021).Article 
CAS 

Google Scholar 
Song, H., Yu, J., Tang, Z., Yang, B. & Lu, S. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv. Energy Mater. 12, 2102573 (2022).Article 
CAS 

Google Scholar 
Liu, K., Ma, Z., Li, J. & Wang, X. Theoretical expectation and experimental investigation on the feasibility of N-doped Ni2P as highly active hydrogen evolution catalyst. Int. J. Hydrog. Energy 51, 713–724 (2023).Article 

Google Scholar 

Hot Topics

Related Articles