Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers

Kang, D., Ricci, F., White, R. J. & Plaxco, K. W. Survey of redox-active moieties for application in multiplexed electrochemical biosensors. Anal. Chem. 88, 10452–10458 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gooding, J. J. & Darwish, N. The rise of self-assembled monolayers for fabricating electrochemical biosensors — an interfacial perspective. Chem. Rec. 12, 92–105 (2012).Article 
CAS 
PubMed 

Google Scholar 
Evans, N. H., Rahman, H., Davis, J. J. & Beer, P. D. Surface-attached sensors for cation and anion recognition. Anal. Bioanal. Chem. 402, 1739–1748 (2012).Article 
CAS 
PubMed 

Google Scholar 
Bizzotto, D., Burgess, I. J., Doneux, T., Sagara, T. & Yu, H.-Z. Beyond simple cartoons: challenges in characterizing electrochemical biosensor interfaces. ACS Sens. 3, 5–12 (2018).Article 
CAS 
PubMed 

Google Scholar 
Bullock, R. M., Das, A. K. & Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem. Eur. J. 23, 7626–7641 (2017).Article 
CAS 
PubMed 

Google Scholar 
Reyes Cruz, E. A. et al. Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies. Chem. Rev. 122, 16051–16109 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kuehnel, M. F., Orchard, K. L., Dalle, K. E. & Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 139, 7217–7223 (2017).Article 
CAS 
PubMed 

Google Scholar 
Fabre, B. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Acc. Chem. Res. 43, 1509–1518 (2010).Article 
CAS 
PubMed 

Google Scholar 
Lindsey, J. S. & Bocian, D. F. Molecules for charge-based information storage. Acc. Chem. Res. 44, 638–650 (2011).Article 
CAS 
PubMed 

Google Scholar 
Zhu, H. & Li, Q. Novel molecular non-volatile memory: application of redox-active molecules. Appl. Sci. 6, 7 (2016).Article 
CAS 

Google Scholar 
Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).Article 
CAS 
PubMed 

Google Scholar 
Casalini, S., Bortolotti, C. A., Leonardi, F. & Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 46, 40–71 (2017).Article 
CAS 
PubMed 

Google Scholar 
Pinson, J. & Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 34, 429–439 (2005).Article 
CAS 
PubMed 

Google Scholar 
Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).Article 
CAS 
PubMed 

Google Scholar 
Laviron, E. Surface linear potential sweep voltammetry: equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account. J. Electroanal. Chem. Interfacial Electrochem. 52, 395–402 (1974).Article 
CAS 

Google Scholar 
Laviron, E. & Roullier, L. General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules. Applications to modified electrodes. J. Electroanal. Chem. 115, 65–74 (1980).Article 
CAS 

Google Scholar 
Fabre, B. Functionalization of oxide-free silicon surfaces with redox-active assemblies. Chem. Rev. 116, 4808–4849 (2016).Article 
PubMed 

Google Scholar 
Eckermann, A. L., Feld, D. J., Shaw, J. A. & Meade, T. J. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 254, 1769–1802 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yao, X., Wang, J., Zhou, F., Wang, J. & Tao, N. Quantification of redox-induced thickness changes of 11- ferrocenylundecanethiol self-assembled monolayers by electrochemical surface plasmon resonance. J. Phys. Chem. B 108, 7206–7212 (2004).Article 
CAS 

Google Scholar 
Ye, S., Sato, Y. & Uosaki, K. Redox-induced orientation change of a self-assembled monolayer of 11-ferrocenyl-1-undecanethiol on a gold electrode studied by in situ FT-IRRAS. Langmuir 13, 3157–3161 (1997).Article 
CAS 

Google Scholar 
Wong, R. A., Yokota, Y., Wakisaka, M., Inukai, J. & Kim, Y. Discerning the redox-dependent electronic and interfacial structures in electroactive self-assembled monolayers. J. Am. Chem. Soc. 140, 13672–13679 (2018).Article 
CAS 
PubMed 

Google Scholar 
Nerngchamnong, N. et al. Supramolecular structure of self-assembled monolayers of ferrocenyl terminated n-alkanethiolates on gold surfaces. Langmuir 30, 13447–13455 (2014).Article 
CAS 
PubMed 

Google Scholar 
Müller-Meskamp, L. et al. Molecular structure of ferrocenethiol islands embedded into alkanethiol self-assembled monolayers by UHV-STM. Phys. Status Solidi A 203, 1448–1452 (2006).Article 

Google Scholar 
Rudnev, A. V. et al. Ferrocene-terminated alkanethiol self-assembled monolayers: an electrochemical and in situ surface-enhanced infra-red absorption spectroscopy study. Electrochim. Acta 107, 33–44 (2013).Article 
CAS 

Google Scholar 
Rudnev, A. V., Yoshida, K. & Wandlowski, T. Electrochemical characterization of self-assembled ferrocene-terminated alkanethiol monolayers on low-index gold single crystal electrodes. Electrochim. Acta 87, 770–778 (2013).Article 
CAS 

Google Scholar 
Murphy, J. N., Cheng, A. K. H., Yu, H.-Z. & Bizzotto, D. On the nature of DNA self-assembled monolayers on Au: measuring surface heterogeneity with electrochemical in situ fluorescence microscopy. J. Am. Chem. Soc. 131, 4042–4050 (2009).Article 
CAS 
PubMed 

Google Scholar 
Abi, A. & Ferapontova, E. E. Unmediated by DNA electron transfer in redox-labeled DNA duplexes end-tethered to gold electrodes. J. Am. Chem. Soc. 134, 14499–14507 (2012).Article 
CAS 
PubMed 

Google Scholar 
Farjami, E., Campos, R. & Ferapontova, E. E. Effect of the DNA end of tethering to electrodes on electron transfer in methylene blue-labeled DNA duplexes. Langmuir 28, 16218–16226 (2012).Article 
CAS 
PubMed 

Google Scholar 
Randriamahazaka, H. & Ghilane, J. Electrografting and controlled surface functionalization of carbon based surfaces for electroanalysis. Electroanalysis 28, 13–26 (2016).Article 
CAS 

Google Scholar 
Whang, D. R. Immobilization of molecular catalysts for artificial photosynthesis. Nano Converg. 7, 37 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Downard, A. J. Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis 12, 1085–1096 (2000).Article 
CAS 

Google Scholar 
Das, M. R., Wang, M., Szunerits, S., Gengembre, L. & Boukherroub, R. Clicking ferrocene groups to boron-doped diamond electrodes. Chem. Commun. https://doi.org/10.1039/b901481k (2009).Das, A. K., Engelhard, M. H., Liu, F., Bullock, R. M. & Roberts, J. A. S. The electrode as organolithium reagent: catalyst-free covalent attachment of electrochemically active species to an azide-terminated glassy carbon electrode surface. Inorg. Chem. 52, 13674–13684 (2013).Article 
CAS 
PubMed 

Google Scholar 
Allongue, P. et al. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 119, 201–207 (1997).Article 
CAS 

Google Scholar 
Jouikov, V. & Simonet, J. Novel method for grafting alkyl chains onto glassy carbon. Application to the easy immobilization of ferrocene used as redox probe. Langmuir 28, 931–938 (2012).Article 
CAS 
PubMed 

Google Scholar 
Dhar, D. et al. Quantitative effects of disorder on chemically modified amorphous carbon electrodes. ACS Appl. Energy Mater. 3, 8038–8047 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sheridan, M. V., Lam, K., Sharafi, M., Schneebeli, S. T. & Geiger, W. E. Anodic methods for covalent attachment of ethynylferrocenes to electrode surfaces: comparison of ethynyl activation processes. Langmuir 32, 1645–1657 (2016).Article 
CAS 
PubMed 

Google Scholar 
Liu, W. & Tilley, T. D. Sterically controlled functionalization of carbon surfaces with –C6H4CH2X (X = OSO2Me or N3) groups for surface attachment of redox-active molecules. Langmuir 31, 1189–1195 (2015).Article 
CAS 
PubMed 

Google Scholar 
Sheridan, M. V., Lam, K., Waterman, R. & Geiger, W. E. Anodic oxidation of ethynylferrocene derivatives in homogeneous solution and following anodic deposition onto glassy carbon electrodes. ChemElectroChem 6, 5880–5887 (2019).Article 
CAS 

Google Scholar 
Tran, P. D. et al. Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. Engl. 50, 1371–1374 (2011).Article 
CAS 
PubMed 

Google Scholar 
Maurin, A. & Robert, M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J. Am. Chem. Soc. 138, 2492–2495 (2016).Article 
CAS 
PubMed 

Google Scholar 
Lei, H. et al. Noncovalent immobilization of a pyrene-modified cobalt corrole on carbon supports for enhanced electrocatalytic oxygen reduction and oxygen evolution in aqueous solutions. ACS Catal. 6, 6429–6437 (2016).Article 
CAS 

Google Scholar 
Blakemore, J. D., Gupta, A., Warren, J. J., Brunschwig, B. S. & Gray, H. B. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production. J. Am. Chem. Soc. 135, 18288–18291 (2013).Article 
CAS 
PubMed 

Google Scholar 
Veerbeek, J. & Huskens, J. Applications of monolayer-functionalized H-terminated silicon surfaces: a review. Small Methods 1, 1700072 (2017).Article 

Google Scholar 
Buriak, J. M. Illuminating silicon surface hydrosilylation: an unexpected plurality of mechanisms. Chem. Mater. 26, 763–772 (2014).Article 
CAS 

Google Scholar 
Hanna, C. M., Pekarek, R. T., Miller, E. M., Yang, J. Y. & Neale, N. R. Decoupling kinetics and thermodynamics of interfacial catalysis at a chemically modified black silicon semiconductor photoelectrode. ACS Energy Lett. 5, 1848–1855 (2020).Article 
CAS 

Google Scholar 
Tajimi, N., Sano, H., Murase, K., Lee, K. H. & Sugimura, H. Thermal immobilization of ferrocene derivatives on (111) surface of n-type silicon: parallel between vinylferrocene and ferrocenecarboxaldehyde. Langmuir 23, 3193–3198 (2007).Article 
CAS 
PubMed 

Google Scholar 
Zhong, Y. L. & Bernasek, S. L. Mild and efficient functionalization of hydrogen-terminated Si(111) via sonochemical activated hydrosilylation. J. Am. Chem. Soc. 133, 8118–8121 (2011).Article 
CAS 
PubMed 

Google Scholar 
Hunger, R. et al. Electronic structure of methoxy-, bromo-, and nitrobenzene grafted onto Si(111). J. Phys. Chem. B 110, 15432–15441 (2006).Article 
CAS 
PubMed 

Google Scholar 
Eagling, R. D., Bateman, J. E., Goodwin, N. J., Henderson, W. & Horrocks, B. R. Synthesis of ferrocenylphosphine-modified silicon surfaces. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/A801315B (1998).Cleland, G., Horrocks, B. R. & Houlton, A. Direct functionalization of silicon via the self-assembly of alcohols. J. Chem. Soc. Faraday Trans. 91, 4001–4003 (1995).Article 
CAS 

Google Scholar 
Roth, K. M. et al. Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100). Toward hybrid molecular/semiconductor information storage devices. J. Am. Chem. Soc. 125, 505–517 (2003).Article 
CAS 
PubMed 

Google Scholar 
Li, Q. et al. Capacitance and conductance characterization of ferrocene-containing self-assembled monolayers on silicon surfaces for memory applications. Appl. Phys. Lett. 81, 1494–1496 (2002).Article 
CAS 

Google Scholar 
Gowda, S., Mathur, G. & Misra, V. Valence band tunneling model for charge transfer of redox-active molecules attached to n- and p-silicon substrates. Appl. Phys. Lett. 90, 142113 (2007).Article 

Google Scholar 
Zhao, Q. et al. Redox-active monolayers on nano-scale silicon electrodes. Nanotechnology 16, 257 (2005).Article 
CAS 
PubMed 

Google Scholar 
Bansal, A. et al. Alkylation of Si surfaces using a two-step halogenation/Grignard route. J. Am. Chem. Soc. 118, 7225–7226 (1996).Article 
CAS 

Google Scholar 
Boucher, D. G., Kearney, K., Ertekin, E. & Rose, M. J. Tuning p-Si(111) photovoltage via molecule|semiconductor electronic coupling. J. Am. Chem. Soc. 143, 2567–2580 (2021).Article 
CAS 
PubMed 

Google Scholar 
Lattimer, J. R. C., Brunschwig, B. S., Lewis, N. S. & Gray, H. B. Redox properties of mixed methyl/vinylferrocenyl monolayers on Si(111) surfaces. J. Phys. Chem. C 117, 27012–27022 (2013).Article 
CAS 

Google Scholar 
O’Leary, L. E. et al. Heck coupling of olefins to mixed methyl/thienyl monolayers on Si(111) surfaces. J. Am. Chem. Soc. 135, 10081–10090 (2013).Article 
PubMed 

Google Scholar 
Fabre, B. & Hauquier, F. Single-component and mixed ferrocene-terminated alkyl monolayers covalently bound to Si(111) surfaces. J. Phys. Chem. B 110, 6848–6855 (2006).Article 
CAS 
PubMed 

Google Scholar 
Ahmad, S. A. A., Ciampi, S., Parker, S. G., Gonçales, V. R. & Gooding, J. J. Forming ferrocenyl self-assembled monolayers on Si(100) electrodes with different alkyl chain lengths for electron transfer studies. ChemElectroChem 6, 211–220 (2019).Article 
CAS 

Google Scholar 
Seo, J., Pekarek, R. T. & Rose, M. J. Photoelectrochemical operation of a surface-bound, nickel-phosphine H2 evolution catalyst on p-Si(111): a molecular semiconductor|catalyst construct. Chem. Commun. 51, 13264–13267 (2015).Article 
CAS 

Google Scholar 
Li, F., Basile, V. M., Pekarek, R. T. & Rose, M. J. Steric spacing of molecular linkers on passivated Si(111) photoelectrodes. ACS Appl. Mater. Interfaces 6, 20557–20568 (2014).Article 
CAS 
PubMed 

Google Scholar 
Ciampi, S., James, M., Michaels, P. & Gooding, J. J. Tandem ‘click’ reactions at acetylene-terminated Si(100) monolayers. Langmuir 27, 6940–6949 (2011).Article 
CAS 
PubMed 

Google Scholar 
Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101, 19–28 (1979).Article 
CAS 

Google Scholar 
Finklea, H. O. & Hanshew, D. D. Preparation and reversible behavior of organized thiol monolayers with attached pentaminepyridineruthenium redox centers. J. Electroanal. Chem. 347, 327–340 (1993).Article 
CAS 

Google Scholar 
Chidsey, C. E. D., Bertozzi, C. R., Putvinski, T. M. & Mujsce, A. M. Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers. J. Am. Chem. Soc. 112, 4301–4306 (1990).Article 
CAS 

Google Scholar 
Kitagawa, T. et al. Ideal redox behavior of the high-density self-assembled monolayer of a molecular tripod on a Au(111) surface with a terminal ferrocene group. Langmuir 29, 4275–4282 (2013).Article 
CAS 
PubMed 

Google Scholar 
Lai, B.-C., Wu, J.-G. & Luo, S.-C. Revisiting background signals and the electrochemical windows of Au, Pt, and GC electrodes in biological buffers. ACS Appl. Energy Mater. 2, 6808–6816 (2019).Article 
CAS 

Google Scholar 
Zhang, S. et al. Common background signals in voltammograms of crystalline silicon electrodes are reversible silica–silicon redox chemistry at highly conductive surface sites. J. Am. Chem. Soc. 143, 1267–1272 (2021).Article 
CAS 
PubMed 

Google Scholar 
Uosaki, K., Sato, Y. & Kita, H. Electrochemical characteristics of a gold electrode modified with a self-assembled monolayer of ferrocenylalkanethiols. Langmuir 7, 1510–1514 (1991).Article 
CAS 

Google Scholar 
De Long, H. C. & Buttry, D. A. Ionic interactions play a major role in determining the electrochemical behavior of self-assembling viologen monolayers. Langmuir 6, 1319–1322 (1990).Article 

Google Scholar 
Wong, R. A., Yokota, Y., Wakisaka, M., Inukai, J. & Kim, Y. Probing consequences of anion-dictated electrochemistry on the electrode/monolayer/electrolyte interfacial properties. Nat. Commun. 11, 4194 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Valincius, G. et al. Anion effect on mediated electron transfer through ferrocene-terminated self-assembled monolayers. Langmuir 20, 6631–6638 (2004).Article 
CAS 
PubMed 

Google Scholar 
Rowe, G. K. & Creager, S. E. Interfacial solvation and double-layer effects on redox reactions in organized assemblies. J. Phys. Chem. 98, 5500–5507 (1994).Article 
CAS 

Google Scholar 
Zhang, L. et al. TEMPO monolayers on Si(100) electrodes: electrostatic effects by the electrolyte and semiconductor space-charge on the electroactivity of a persistent radical. J. Am. Chem. Soc. 138, 9611–9619 (2016).Article 
CAS 
PubMed 

Google Scholar 
Rowe, G. K. & Creager, S. E. Redox and ion-pairing thermodynamics in self-assembled monolayers. Langmuir 7, 2307–2312 (1991).Article 
CAS 

Google Scholar 
De Long, H. C. & Buttry, D. A. Environmental effects on redox potentials of viologen groups embedded in electroactive self-assembled monolayers. Langmuir 8, 2491–2496 (1992).Article 

Google Scholar 
Sagara, T., Maeda, H., Yuan, Y. & Nakashima, N. Voltammetric and electroreflectance study of thiol-functionalized viologen monolayers on polycrystalline gold: effect of anion binding to a viologen moiety. Langmuir 15, 3823–3830 (1999).Article 
CAS 

Google Scholar 
Jalkh, J., Leroux, Y. R., Lagrost, C. & Hapiot, P. Comparative electrochemical investigations in ionic liquids and molecular solvents of a carbon surface modified by a redox monolayer. J. Phys. Chem. C 118, 28640–28646 (2014).Article 
CAS 

Google Scholar 
Taherinia, D. Investigation of the interfacial electron transfer kinetics in ferrocene-terminated oligophenyleneimine self-assembled monolayers. Langmuir 36, 12572–12579 (2020).Article 
CAS 
PubMed 

Google Scholar 
Peng, Z., Qu, X. & Dong, S. Co-assembly of ferrocene-terminated and alkylthiophene thiols on gold and its redox chemistry modulated by surfactant adsorption. J. Electroanal. Chem. 563, 291–298 (2004).Article 
CAS 

Google Scholar 
Guo, Y., Zhao, J. & Zhu, J. Study on the intermolecular interactions between the functional moieties in ferrocene-terminated alkanethiol self-assembled monolayer on gold. Thin Solid Films 516, 3051–3057 (2008).Article 
CAS 

Google Scholar 
Sun, Q. W., Murase, K., Ichii, T. & Sugimura, H. Anionic effect of ionic liquids electrolyte on electrochemical behavior of ferrocenylthiol/alkanethiol binary SAMs. J. Electroanal. Chem. 643, 58–66 (2010).Article 
CAS 

Google Scholar 
Ravenscroft, M. S. & Finklea, H. O. Kinetics of electron transfer to attached redox centers on gold electrodes in nonaqueous electrolytes. J. Phys. Chem. 98, 3843–3850 (1994).Article 
CAS 

Google Scholar 
Brooksby, P. A., Anderson, K. H., Downard, A. J. & Abell, A. D. Voltammetric and electrochemical impedance study of ferrocenyl containing β-peptide monolayers on gold. J. Phys. Chem. C 115, 7516–7526 (2011).Article 
CAS 

Google Scholar 
Tang, X., Schneider, T. W., Walker, J. W. & Buttry, D. A. Dimerized π-complexes in self-assembled monolayers containing viologens: an origin of unusual wave shapes in the voltammetry of monolayers. Langmuir 12, 5921–5933 (1996).Article 
CAS 

Google Scholar 
Weber, K., Hockett, L. & Creager, S. Long-range electronic coupling between ferrocene and gold in alkanethiolate-based monolayers on electrodes. J. Phys. Chem. B 101, 8286–8291 (1997).Article 
CAS 

Google Scholar 
Fontanesi, C. et al. Redox-active ferrocene grafted on H-terminated Si(111): electrochemical characterization of the charge transport mechanism and dynamics. Sci. Rep. 9, 8735 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, K. et al. Ferrocene and porphyrin monolayers on Si(100) surfaces: preparation and effect of linker length on electron transfer. ChemPhysChem 10, 963–971 (2009).Article 
CAS 
PubMed 

Google Scholar 
Smalley, J. F. et al. Kinetics of electron transfer through ferrocene-terminated alkanethiol monolayers on gold. J. Phys. Chem. 99, 13141–13149 (1995).Article 
CAS 

Google Scholar 
Viana, A. S., Jones, A. H., Abrantes, L. M. & Kalaji, M. Redox induced orientational changes in a series of short chain ferrocenyl alkyl thiols self-assembled on gold(111) electrodes. J. Electroanal. Chem. 500, 290–298 (2001).Article 
CAS 

Google Scholar 
Wei, L. et al. Structural and electron-transfer characteristics of carbon-tethered porphyrin monolayers on Si(100). J. Phys. Chem. B 109, 6323–6330 (2005).Article 
CAS 
PubMed 

Google Scholar 
Feng, Y., Dionne, E. R., Toader, V., Beaudoin, G. & Badia, A. Odd-even effects in electroactive self-assembled monolayers investigated by electrochemical surface plasmon resonance and impedance spectroscopy. J. Phys. Chem. C 121, 24626–24640 (2017).Article 
CAS 

Google Scholar 
Mukherjee, S., Bandyopadhyay, S. & Dey, A. Tuning the apparent formal potential of covalently attached ferrocene using SAM bearing ionizable –COOH groups. Electrochim. Acta 108, 624–633 (2013).Article 
CAS 

Google Scholar 
Smith, C. P. & White, H. S. Theory of the interfacial potential distribution and reversible voltammetric response of electrodes coated with electroactive molecular films. Anal. Chem. 64, 2398–2405 (1992).Article 
CAS 
PubMed 

Google Scholar 
Wright, D. et al. Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nat. Catal. 4, 157–163 (2021).Article 
CAS 

Google Scholar 
Eggers, P. K., Darwish, N., Paddon-Row, M. N. & Gooding, J. J. Surface-bound molecular rulers for probing the electrical double layer. J. Am. Chem. Soc. 134, 7539–7544 (2012).Article 
CAS 
PubMed 

Google Scholar 
Qi, L., Tian, H., Shao, H. & Yu, H. Z. Host-guest interaction at molecular interfaces: binding of cucurbit[7]uril on ferrocenyl self-assembled monolayers on gold. J. Phys. Chem. C 121, 7985–7992 (2017).Article 
CAS 

Google Scholar 
Qi, L. & Yu, H. Z. Supramolecular host-guest inclusion to regulate long-range electron transfer at highly oriented molecular interfaces. J. Phys. Chem. C 123, 26315–26323 (2019).Article 
CAS 

Google Scholar 
Fabre, B., Pujari, S. P., Scheres, L. & Zuilhof, H. Micropatterned ferrocenyl monolayers covalently bound to hydrogen-terminated silicon surfaces: effects of pattern size on the cyclic voltammetry and capacitance characteristics. Langmuir 30, 7235–7243 (2014).Article 
CAS 
PubMed 

Google Scholar 
Nerngchamnong, N. et al. Nonideal electrochemical behavior of ferrocenyl-alkanethiolate SAMs maps the microenvironment of the redox unit. J. Phys. Chem. C 119, 21978–21991 (2015).Article 
CAS 

Google Scholar 
Patel, D. A. et al. Porosity effects on the ordering and stability of self-assembled monolayers on nanoporous gold. J. Phys. Chem. C 124, 26851–26863 (2020).Article 
CAS 

Google Scholar 
Patel, D. A., Weller, A. M., Chevalier, R. B., Karos, C. A. & Landis, E. C. Ordering and defects in self-assembled monolayers on nanoporous gold. Appl. Surf. Sci. 387, 503–512 (2016).Article 
CAS 

Google Scholar 
Yang, Y., Ciampi, S. & Gooding, J. J. Coupled thermodynamic and kinetic changes in the electrochemistry of ferrocenyl monolayers induced by light. Langmuir 33, 2497–2503 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhang, S., Lyu, X., Hurtado Torres, C., Darwish, N. & Ciampi, S. Non-ideal cyclic voltammetry of redox monolayers on silicon electrodes: peak splitting is caused by heterogeneous photocurrents and not by molecular disorder. Langmuir 38, 743–750 (2022).Article 
CAS 
PubMed 

Google Scholar 
Vogel, Y. B., Molina, A., Gonzalez, J. & Ciampi, S. Quantitative analysis of cyclic voltammetry of redox monolayers adsorbed on semiconductors: isolating electrode kinetics, lateral interactions, and diode currents. Anal. Chem. 91, 5929–5937 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dalchiele, E. A. et al. XPS and electrochemical studies of ferrocene derivatives anchored on n- and p-Si(1 0 0) by Si-O or Si-C bonds. J. Electroanal. Chem. 579, 133–142 (2005).Article 
CAS 

Google Scholar 
Decker, F. et al. Electrochemical reversibility of vinylferrocene monolayers covalently attached on H-terminated p-Si(100). J. Phys. Chem. B 110, 7374–7379 (2006).Article 
CAS 
PubMed 

Google Scholar 
Zanoni, R. et al. An AFM, XPS and electrochemical study of molecular electroactive monolayers formed by wet chemistry functionalization of H-terminated Si(1 0 0) with vinylferrocene. Surf. Sci. 575, 260–272 (2005).Article 
CAS 

Google Scholar 
Ciampi, S. et al. The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface. Electrochim. Acta 186, 216–222 (2015).Article 
CAS 

Google Scholar 
Barrelet, C. J. et al. Surface characterization and electrochemical properties of alkyl, fluorinated alkyl, and alkoxy monolayers on silicon. Langmuir 17, 3460–3465 (2001).Article 
CAS 

Google Scholar 
Vogel, Y. B. et al. Reproducible flaws unveil electrostatic aspects of semiconductor electrochemistry. Nat. Commun. 8, 2066 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Laviron, E. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem. 100, 263–270 (1979).Article 
CAS 

Google Scholar 
Matsuda, H., Aoki, K. & Tokuda, K. Theory of electrode reactions of redox couples confined to electrode surfaces at monolayer levels: part I. Expression of the current-potential relationship for simple redox reactions. J. Electroanal. Chem. Interfacial Electrochem. 217, 1–13 (1987).Article 
CAS 

Google Scholar 
Matsuda, H., Aoki, K. & Tokuda, K. Theory of electrode reactions of redox couples confined to electrode surfaces at monolayer levels: part II. Cyclic voltammetry and ac impedance measurements. J. Electroanal. Chem. Interfacial Electrochem. 217, 15–32 (1987).Article 
CAS 

Google Scholar 
Antuch, M., Abradelo, D. G. & Cao, R. Intermolecular interactions in mixed self-assembled monolayers of ferrocene. Electroanalysis 27, 1939–1943 (2015).Article 
CAS 

Google Scholar 
Bertin, P. A. et al. Ferrocene and maleimide-functionalized disulfide scaffolds for self-assembled monolayers on gold. Org. Lett. 12, 3372–3375 (2010).Article 
CAS 
PubMed 

Google Scholar 
Gonzalez, J. & Sequí, J. A. Kinetic implications of the presence of intermolecular interactions in the response of binary self-assembled electroactive monolayers. ACS Omega 3, 1276–1292 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mishchenko, A. et al. Electrochemical scanning tunnelling spectroscopy of a ferrocene-modified n-Si(111)-surface: electrolyte gating and ambipolar FET behaviour. Chem. Commun. 47, 9807–9809 (2011).Article 
CAS 

Google Scholar 
Blanchard, P.-Y. et al. Intermolecular interactions in self-assembled monolayers of tetrathiafulvalene derivatives. Phys. Chem. Chem. Phys. 13, 2118–2120 (2011).Article 
CAS 
PubMed 

Google Scholar 
Sheridan, M. V. et al. Effect of large electrolyte anions on the sequential oxidations of bis(fulvalene)diiron attached to glassy carbon by an ethynyl linkage. Langmuir 34, 1327–1339 (2018).Article 
CAS 
PubMed 

Google Scholar 
Huffman, B. L., Donley, C. L. & Dempsey, J. L. Electrochemistry of redox active ferrocene covalently attached to glassy carbon electrodes. J. Electrochem. Soc. 170, 126501 (2023).Article 

Google Scholar 
Chambers, R. C., Inman, C. E. & Hutchison, J. E. Electrochemical detection of nanoscale phase separation in binary self-assembled monolayers. Langmuir 21, 4615–4621 (2005).Article 
CAS 
PubMed 

Google Scholar 
Honeychurch, M. J. & Rechnitz, G. A. Voltammetry of adsorbed molecules. Part 1: reversible redox systems. Electroanalysis 10, 285–293 (1998).Article 
CAS 

Google Scholar 
Khalid, H. et al. Modulated structure and rectification properties of a molecular junction by a mixed self-assembled monolayer. Langmuir 38, 10893–10901 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lee, L. Y. S., Sutherland, T. C., Rucareanu, S. & Lennox, R. B. Ferrocenylalkylthiolates as a probe of heterogeneity in binary self-assembled monolayers on gold. Langmuir 22, 4438–4444 (2006).Article 
CAS 
PubMed 

Google Scholar 
Yokota, Y., Fukui, K. I., Enoki, T. & Hara, M. Origin of current enhancement through a ferrocenylundecanethiol island embedded in alkanethiol SAMs by using electrochemical potential control. J. Phys. Chem. C 111, 7561–7564 (2007).Article 
CAS 

Google Scholar 
Calvente, J. J., Andreu, R., Molero, M., López-Pérez, G. & Domínguez, M. Influence of spatial redox distribution on the electrochemical behavior of electroactive self-assembled monolayers. J. Phys. Chem. B 105, 9557–9568 (2001).Article 
CAS 

Google Scholar 
Andreu, R., Calvente, J. J., Fawcett, W. R. & Molero, M. Discreteness of charge and ion association effects on electroactive self-assembled monolayers. Langmuir 13, 5189–5196 (1997).Article 
CAS 

Google Scholar 
Ohtani, M., Kuwabata, S. & Yoneyama, H. Voltammetric response accompanied by inclusion of ion pairs and triple ion formation of electrodes coated with an electroactive monolayer film. Anal. Chem. 69, 1045–1053 (1997).Article 
CAS 

Google Scholar 
Ohtani, M. Quasi-reversible voltammetric response of electrodes coated with electroactive monolayer films. Electrochem. Commun. 1, 488–492 (1999).Article 
CAS 

Google Scholar 
Jangid, V. et al. Improving orientation, packing density, and molecular arrangement in self-assembled monolayers of bianchoring ferrocene–triazole derivatives by “click” chemistry. Langmuir 38, 3585–3596 (2022).Article 
CAS 
PubMed 

Google Scholar 
Duffin, T. J., Nerngchamnong, N., Thompson, D. & Nijhuis, C. A. Direct measurement of the local field within alkyl-ferrocenyl-alkanethiolate monolayers: importance of the supramolecular and electronic structure on the voltammetric response and potential profile. Electrochim. Acta 311, 92–102 (2019).Article 
CAS 

Google Scholar 
Nkosi, D., Pillay, J., Ozoemena, K. I., Nouneh, K. & Oyama, M. Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers. Phys. Chem. Chem. Phys. 12, 604–613 (2009).Article 
PubMed 

Google Scholar 
Eckermann, A. L., Shaw, J. A. & Meade, T. J. Kinetic dispersion in redox-active dithiocarbamate monolayers. Langmuir 26, 2904–2913 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ruther, R. E., Cui, Q. & Hamers, R. J. Conformational disorder enhances electron transfer through alkyl monolayers: ferrocene on conductive diamond. J. Am. Chem. Soc. 135, 5751–5761 (2013).Article 
CAS 
PubMed 

Google Scholar 
Yasseri, A. A. et al. Characterization of self-assembled monolayers of porphyrins bearing multiple thiol-derivatized rigid-rod tethers. J. Am. Chem. Soc. 126, 11944–11953 (2004).Article 
CAS 
PubMed 

Google Scholar 
Tian, H., Dai, Y., Shao, H. & Yu, H. Z. Modulated intermolecular interactions in ferrocenylalkanethiolate self-assembled monolayers on gold. J. Phys. Chem. C 117, 1006–1012 (2013).Article 
CAS 

Google Scholar 
Fang, C., Megharaj, M. & Naidu, R. Electrochemical studies on self-assembled monolayer (SAM) upon exposure to anionic surfactants: PFOA, PFOS, SDS and SDBS. Electroanalysis 29, 2155–2160 (2017).Article 
CAS 

Google Scholar 
Collard, D. M. & Fox, M. A. Use of electroactive thiols to study the formation and exchange of alkanethiol monolayers on gold. Langmuir 7, 1192–1197 (1991).Article 
CAS 

Google Scholar 
Gautam, R. P. & Barile, C. J. Preparation and electron-transfer properties of self-assembled monolayers of ferrocene on carbon electrodes. J. Phys. Chem. C 125, 8177–8184 (2021).Article 
CAS 

Google Scholar 
Pastor, E. et al. Complementary probes for the electrochemical interface. Nat. Rev. Chem. 8, 159–178 (2024).Article 
PubMed 

Google Scholar 
Levey, K. J., Edwards, M. A., White, H. S. & Macpherson, J. V. Finite element modeling of the combined faradaic and electrostatic contributions to the voltammetric response of monolayer redox films. Anal. Chem. 94, 12673–12682 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Waelder, J. & Maldonado, S. Beyond the Laviron method: a new mathematical treatment for analyzing the faradaic current in reversible, quasi-reversible, and irreversible cyclic voltammetry of adsorbed redox species. Anal. Chem. 93, 12672–12681 (2021).Article 
CAS 
PubMed 

Google Scholar 
Waelder, J., Vasquez, R., Liu, Y. & Maldonado, S. A description of the faradaic current in cyclic voltammetry of adsorbed redox species on semiconductor electrodes. J. Am. Chem. Soc. 144, 6410–6419 (2022).Article 
CAS 
PubMed 

Google Scholar 
Laschuk, N. O., Easton, E. B. & Zenkina, O. V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 11, 27925–27936 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 1, 41 (2021).Article 
CAS 

Google Scholar 
Li, J., Cheng, G. & Dong, S. Electrochemical study of the interfacial characteristics of redox-active viologen thiol self-assembled monolayers. Thin Solid Films 293, 200–205 (1997).Article 
CAS 

Google Scholar 
Lambert, C., Kriegisch, V., Terfort, A. & Zeysing, B. Heterogeneous electron transfer processes in triarylamine- and ferrocene-based self-assembled monolayers. J. Electroanal. Chem. 590, 32–36 (2006).Article 
CAS 

Google Scholar 
Eggers, P. K., Zareie, H. M., Paddon-Row, M. N. & Gooding, J. J. Structure and properties of redox active self-assembled monolayers formed from norbornylogous bridges. Langmuir 25, 11090–11096 (2009).Article 
CAS 
PubMed 

Google Scholar 
Silva, B. P. G., de Florio, D. Z. & Brochsztain, S. Characterization of a perylenediimide self-assembled monolayer on indium tin oxide electrodes using electrochemical impedance spectroscopy. J. Phys. Chem. C 118, 4103–4112 (2014).Article 
CAS 

Google Scholar 
Sharma, A. et al. Electrochemical impedance spectroscopy study of carbohydrate-terminated alkanethiol monolayers on nanoporous gold: implications for pore wetting. J. Electroanal. Chem. 782, 174–181 (2016).Article 
CAS 

Google Scholar 
Wallauer, J. et al. Electrochemical kinetics of ferrocene-based redox-ILs investigated by multi-spectrum impedance fitting. J. Phys. Chem. C 121, 26706–26712 (2017).Article 
CAS 

Google Scholar 
Aceta, Y., Leroux, Y. R. & Hapiot, P. Evaluation of alkyl-ferrocene monolayers on carbons for charge storage applications, a voltammetry and impedance spectroscopy investigation. ChemElectroChem 6, 1704–1710 (2019).Article 
CAS 

Google Scholar 
Boubour, E. & Lennox, R. B. Insulating properties of self-assembled monolayers monitored by impedance spectroscopy. Langmuir 16, 4222–4228 (2000).Article 
CAS 

Google Scholar 
Boubour, E. & Lennox, R. B. Potential-induced defects in n-alkanethiol self-assembled monolayers monitored by impedance spectroscopy. J. Phys. Chem. B 104, 9004–9010 (2000).Article 
CAS 

Google Scholar 
Campuzano, S., Pedrero, M., Montemayor, C., Fatás, E. & Pingarrón, J. M. Characterization of alkanethiol-self-assembled monolayers-modified gold electrodes by electrochemical impedance spectroscopy. J. Electroanal. Chem. 586, 112–121 (2006).Article 
CAS 

Google Scholar 
Diao, P., Guo, M. & Tong, R. Characterization of defects in the formation process of self-assembled thiol monolayers by electrochemical impedance spectroscopy. J. Electroanal. Chem. 495, 98–105 (2001).Article 
CAS 

Google Scholar 
Ganesh, V., Pal, S. K., Kumar, S. & Lakshminarayanan, V. Self-assembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold — a study of electron transfer reaction using cyclic voltammetry and electrochemical impedance spectroscopy. J. Colloid Interface Sci. 296, 195–203 (2006).Article 
CAS 
PubMed 

Google Scholar 
Agonafer, D. D., Chainani, E., Oruc, M. E., Lee, K. S. & Shannon, M. A. Study of insulating properties of alkanethiol self-assembled monolayers formed under prolonged incubation using electrochemical impedance spectroscopy. J. Nanotechnol. Eng. Med. 3, 0310061–0310068 (2013).
Google Scholar 
Li, J., Schuler, K. & Creager, S. E. A generalized equivalent‐circuit model for electroactive monolayers exhibiting a fixed redox potential and a distribution of electron‐transfer rate constants I. Square distributions. J. Electrochem. Soc. 147, 4584 (2000).Article 
CAS 

Google Scholar 
Creager, S. E. & Wooster, T. T. A new way of using ac voltammetry to study redox kinetics in electroactive monolayers. Anal. Chem. 70, 4257–4263 (1998).Article 
CAS 

Google Scholar 
Bueno, P. R., Mizzon, G. & Davis, J. J. Capacitance spectroscopy: a versatile approach to resolving the redox density of states and kinetics in redox-active self-assembled monolayers. J. Phys. Chem. B 116, 8822–8829 (2012).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles