Research on molecular characteristics of ADME-related genes in kidney renal clear cell carcinoma

Jonasch, E., Gao, J. & Rathmell, W. K. Renal cell carcinoma. BMJ 349, 14797. https://doi.org/10.1136/bmj.g4797 (2014).Article 

Google Scholar 
Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249. https://doi.org/10.3322/caac.21660 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Primers 3, 17009. https://doi.org/10.1038/nrdp.2017.9 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Turajlic, S., Swanton, C. & Boshoff, C. Kidney cancer: The next decade. J Exp Med 215, 2477–2479. https://doi.org/10.1084/jem.20181617 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jonasch, E., Walker, C. L. & Rathmell, W. K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat. Rev. Nephrol. 17, 245–261. https://doi.org/10.1038/s41581-020-00359-2 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hutter, C. & Zenklusen, J. C. The cancer genome atlas: creating lasting value beyond its data. Cell 173, 283–285. https://doi.org/10.1016/j.cell.2018.03.042 (2018).Article 
CAS 
PubMed 

Google Scholar 
Grossman, I. ADME pharmacogenetics: current practices and future outlook. Expert Opin. Drug Metab. Toxicol. 5, 449–462. https://doi.org/10.1517/17425250902902322 (2009).Article 
CAS 
PubMed 

Google Scholar 
Hu, D. G., Marri, S., McKinnon, R. A., Mackenzie, P. I. & Meech, R. Deregulation of the genes that are involved in drug absorption, distribution, metabolism, and excretion in hepatocellular carcinoma. J. Pharmacol. Exp. Ther. 368, 363–381. https://doi.org/10.1124/jpet.118.255018 (2019).Article 
CAS 
PubMed 

Google Scholar 
Rosenthal, S. B., Bush, K. T. & Nigam, S. K. A network of SLC and ABC transporter and DME genes involved in remote sensing and signaling in the gut-liver-kidney axis. Sci Rep 9, 11879. https://doi.org/10.1038/s41598-019-47798-x (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fisel, P., Schaeffeler, E. & Schwab, M. DNA methylation of ADME genes. Clin. Pharmacol. Ther. 99, 512–527. https://doi.org/10.1002/cpt.343 (2016).Article 
CAS 
PubMed 

Google Scholar 
Drozdzik, M. & Oswald, S. Expression and regulation of drug transporters and metabolizing enzymes in the human gastrointestinal tract. Curr. Med. Chem. 23, 4468–4489. https://doi.org/10.2174/0929867323666161024154457 (2016).Article 
CAS 
PubMed 

Google Scholar 
Huang, J. F. et al. Overexpression of ABCB4 contributes to acquired doxorubicin resistance in breast cancer cells in vitro. Cancer Chemother. Pharmacol. 82, 199–210. https://doi.org/10.1007/s00280-018-3603-y (2018).Article 
CAS 
PubMed 

Google Scholar 
Matheux, A. et al. PXR modulates the prostate cancer cell response to afatinib by regulating the expression of the monocarboxylate transporter SLC16A1. Cancers (Basel) https://doi.org/10.3390/cancers13143635 (2021).Article 
PubMed 

Google Scholar 
Cheng, S. Y. et al. Glutathione S-transferase M3 is associated with glycolysis in intrinsic temozolomide-resistant glioblastoma multiforme cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22137080 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Hu, D. G., Mackenzie, P. I., Nair, P. C., McKinnon, R. A. & Meech, R. The expression profiles of ADME genes in human cancers and their associations with clinical outcomes. Cancers (Basel) https://doi.org/10.3390/cancers12113369 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, G. et al. DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS One 7, e31507. https://doi.org/10.1371/journal.pone.0031507 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812-830 e814. https://doi.org/10.1016/j.immuni.2018.03.023 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, S. M., Sun, Z. Q., Li, H. Y., Wang, J. & Liu, Q. Y. Temporal identification of dysregulated genes and pathways in clear cell renal cell carcinoma based on systematic tracking of disrupted modules. Comput. Math. Methods Med. 2015, 313740. https://doi.org/10.1155/2015/313740 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Zou, X. & Mo, Z. CYP2J2 is a diagnostic and prognostic biomarker associated with immune infiltration in kidney renal clear cell carcinoma. Biomed. Res. Int. 2021, 3771866. https://doi.org/10.1155/2021/3771866 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lu, J. et al. ABAT and ALDH6A1, regulated by transcription factor HNF4A, suppress tumorigenic capability in clear cell renal cell carcinoma. J. Transl. Med. 18, 101. https://doi.org/10.1186/s12967-020-02268-1 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hinshaw, D. C. & Shevde, L. A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 79, 4557–4566. https://doi.org/10.1158/0008-5472.CAN-18-3962 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pitt, J. M. et al. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann. Oncol. 27, 1482–1492. https://doi.org/10.1093/annonc/mdw168 (2016).Article 
CAS 
PubMed 

Google Scholar 
Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330. https://doi.org/10.1038/nature21349 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558. https://doi.org/10.1038/s41591-018-0136-1 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18, 248–262. https://doi.org/10.1016/j.celrep.2016.12.019 (2017).Article 
CAS 
PubMed 

Google Scholar 
Muzio, G., Maggiora, M., Paiuzzi, E., Oraldi, M. & Canuto, R. A. Aldehyde dehydrogenases and cell proliferation. Free Radic. Biol. Med. 52, 735–746. https://doi.org/10.1016/j.freeradbiomed.2011.11.033 (2012).Article 
CAS 
PubMed 

Google Scholar 
Peng, X., Zheng, T., Guo, Y. & Zhu, Y. Amino acid metabolism genes associated with immunotherapy responses and clinical prognosis of colorectal cancer. Front Mol. Biosci. 9, 955705. https://doi.org/10.3389/fmolb.2022.955705 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718. https://doi.org/10.1038/s41586-018-0735-5 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, K. K. et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum. Pathol. 40, 1234–1243. https://doi.org/10.1016/j.humpath.2009.02.003 (2009).Article 
CAS 
PubMed 

Google Scholar 
Matheux, A. et al. PXR modulates the prostate cancer cell response to afatinib by regulating the expression of the monocarboxylate transporter SLC16A1. Cancers (Basel) https://doi.org/10.3390/cancers13143635 (2021).Article 
PubMed 

Google Scholar 
You, S. et al. Construction of SLC16A1/3 targeted gallic acid-iron-embelin nanoparticles for regulating glycolysis and redox pathways in cervical cancer. Mol. Pharm. 20, 4574–4586. https://doi.org/10.1021/acs.molpharmaceut.3c00294 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhong, P. C. et al. Altered gene expression in glycolysis-cholesterol synthesis axis correlates with outcome of triple-negative breast cancer. Exp. Biol. Med. (Maywood) 246, 560–571. https://doi.org/10.1177/1535370220975206 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, G., Liu, X., Wang, D., Sun, M. & Yang, Q. Identification and development of subtypes with poor prognosis in pan-gynecological cancer based on gene expression in the glycolysis-cholesterol synthesis axis. Front. Oncol. 11, 636565. https://doi.org/10.3389/fonc.2021.636565 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, E. et al. Identification of subgroups along the glycolysis-cholesterol synthesis axis and the development of an associated prognostic risk model. Hum. Genomics 15, 53. https://doi.org/10.1186/s40246-021-00350-3 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y. J. et al. Interaction between glycolysis-cholesterol synthesis axis and tumor microenvironment reveal that gamma-glutamyl hydrolase suppresses glycolysis in colon cancer. Front Immunol. 13, 979521. https://doi.org/10.3389/fimmu.2022.979521 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deng, W., Zhu, P., Xu, H., Hou, X. & Chen, W. Classification and prognostic characteristics of hepatocellular carcinoma based on glycolysis cholesterol synthesis axis. J. Oncol. 2022, 2014625. https://doi.org/10.1155/2022/2014625 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Karasinska, J. M. et al. Altered gene expression along the glycolysis-cholesterol synthesis axis is associated with outcome in pancreatic cancer. Clin. Cancer Res. 26, 135–146. https://doi.org/10.1158/1078-0432.CCR-19-1543 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yuan, Y., Song, J. & Wu, Q. Aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: A bioinformatics analysis. Medicine (Baltimore) 101, e31416. https://doi.org/10.1097/MD.0000000000031416 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wettersten, H. I., Aboud, O. A., Lara, P. N. Jr. & Weiss, R. H. Metabolic reprogramming in clear cell renal cell carcinoma. Nat. Rev. Nephrol. 13, 410–419. https://doi.org/10.1038/nrneph.2017.59 (2017).Article 
CAS 
PubMed 

Google Scholar 
Matsukawa, T. et al. ANGPTL8 links inflammation and poor differentiation, which are characteristics of malignant renal cell carcinoma. Cancer Sci. 114, 1410–1422. https://doi.org/10.1111/cas.15700 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y. C., Hsieh, C. L., Huang, B. M. & Chen, Y. C. Induction of mitochondrial-dependent apoptosis by essential oil of Toona sinensis root through Akt, mTOR and NF-kappaB signalling pathways in human renal cell carcinoma cells. J. Food Drug Anal. 29, 433–447. https://doi.org/10.38212/2224-6614.3367 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luebke, T. et al. c-FLIP and CD95 signaling are essential for survival of renal cell carcinoma. Cell Death Dis. 10, 384. https://doi.org/10.1038/s41419-019-1609-y (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, W. et al. OTUD1 stabilizes PTEN to inhibit the PI3K/AKT and TNF-alpha/NF-kappaB signaling pathways and sensitize ccRCC to TKIs. Int. J. Biol. Sci. 18, 1401–1414. https://doi.org/10.7150/ijbs.68980 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, S. et al. Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS One 8, 181657. https://doi.org/10.1371/journal.pone.0081657 (2013).Article 
CAS 

Google Scholar 
Xiao, C. et al. RNF7 inhibits apoptosis and sunitinib sensitivity and promotes glycolysis in renal cell carcinoma via the SOCS1/JAK/STAT3 feedback loop. Cell Mol. Biol. Lett. 27, 36. https://doi.org/10.1186/s11658-022-00337-55 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoesel, B. & Schmid, J. A. The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer 12, 86. https://doi.org/10.1186/1476-4598-12-86 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer 14, 736–746. https://doi.org/10.1038/nrc3818 (2014).Article 
CAS 
PubMed 

Google Scholar 
Chang, Y. et al. Systemic inflammation score predicts postoperative prognosis of patients with clear-cell renal cell carcinoma. Br. J. Cancer 113, 626–633. https://doi.org/10.1038/bjc.2015.241 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, H. et al. Prognostic value of preoperative NLR, dNLR, PLR and CRP in surgical renal cell carcinoma patients. World J. Urol. 35, 261–270. https://doi.org/10.1007/s00345-016-1864-9 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hu, Q. et al. The prognostic value of C-reactive protein in renal cell carcinoma: a systematic review and meta-analysis. Urol. Oncol. 32(50), 151–158. https://doi.org/10.1016/j.urolonc.2013.07.016 (2014).Article 
CAS 

Google Scholar 
Marozzi, M. et al. Inflammation, extracellular matrix remodeling, and proteostasis in tumor microenvironment. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22158102 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Q. et al. NF-kappaB and pSTAT3 synergistically drive G6PD overexpression and facilitate sensitivity to G6PD inhibition in ccRCC. Cancer Cell Int. 20, 483. https://doi.org/10.1186/s12935-020-01576-2 (2010).Article 
CAS 

Google Scholar 
Peng, J. et al. Stabilization of MCRS1 by BAP1 prevents chromosome instability in renal cell carcinoma. Cancer Lett. 369, 167–174. https://doi.org/10.1016/j.canlet.2015.08.013 (2015).Article 
CAS 
PubMed 

Google Scholar 
Pena-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759. https://doi.org/10.1038/ng.2323 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363. https://doi.org/10.1038/nature08672 (2010).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Capitanio, U. et al. Epidemiology of renal cell carcinoma. Eur. Urol. 75, 74–84. https://doi.org/10.1016/j.eururo.2018.08.0365 (2019).Article 
PubMed 

Google Scholar 
Ismail, I. H. et al. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 74, 4282–4294. https://doi.org/10.1158/0008-5472.CAN-13-3109r (2014).Article 
CAS 
PubMed 

Google Scholar 
Carvalho, S. et al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. Elife 3, e02482. https://doi.org/10.7554/eLife.02482 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, F. et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153, 590–600. https://doi.org/10.1016/j.cell.2013.03.025 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Colaprico, A. et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucl. Acids Res. 44, 171. https://doi.org/10.1093/nar/gkv1507 (2016).Article 
CAS 

Google Scholar 
Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867. https://doi.org/10.1038/ng.2699 (2013).Article 
CAS 
PubMed 

Google Scholar 
Sun, G. et al. Integrated exome and RNA sequencing of TFE3-translocation renal cell carcinoma. Nat. Commun. 12, 5262. https://doi.org/10.1038/s41467-021-25618-z (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hovelson, D. H. et al. Characterization of ADME gene variation in 21 populations by exome sequencing. Pharmacogenet. Genomics 27, 89–100. https://doi.org/10.1097/FPC.0000000000000260 (2017).Article 
CAS 
PubMed 

Google Scholar 
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28, 1747–1756. https://doi.org/10.1101/gr.239244.118 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, 141. https://doi.org/10.1186/gb-2011-12-4-r41 (2011).Article 
CAS 

Google Scholar 
Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573. https://doi.org/10.1093/bioinformatics/btq170 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Archer, T. C. et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell 34, 396-410 e398. https://doi.org/10.1016/j.ccell.2018.08.004 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, T. et al. CancerSubtypes: An R/Bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics 33, 3131–3133. https://doi.org/10.1093/bioinformatics/btx378 (2017).Article 
CAS 
PubMed 

Google Scholar 
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, J. et al. A novel immune-related lncRNA pair signature for prognostic prediction and immune response evaluation in gastric cancer: a bioinformatics and biological validation study. Cancer Cell Int. 22, 69. https://doi.org/10.1186/s12935-022-02493-25 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blanche, P., Dartigues, J. F. & Jacqmin-Gadda, H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat. Med. 32, 5381–5397. https://doi.org/10.1002/sim.5958 (2013).Article 
MathSciNet 
PubMed 

Google Scholar 
Mogensen, U. B., Ishwaran, H. & Gerds, T. A. Evaluating random forests for survival analysis using prediction error curves. J. Stat. Softw. 50, 1–23. https://doi.org/10.18637/jss.v050.i11 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucl. Acids Res 51, D587–D592. https://doi.org/10.1093/nar/gkac963 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 16, 284–287. https://doi.org/10.1089/omi.2011.0118 (2010).Article 
CAS 

Google Scholar 
Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7. https://doi.org/10.1186/1471-2105-14-7 (2013).Article 

Google Scholar 
Lauss, M. et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun. 8, 1738. https://doi.org/10.1038/s41467-017-01460-0 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837. https://doi.org/10.1158/2159-8290.CD-15-1545 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548. https://doi.org/10.1038/nature25501 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sturm, G., Finotello, F. & List, M. Immunedeconv: An R package for unified access to computational methods for estimating immune cell fractions from bulk RNA-sequencing data. Methods Mol. Biol. 2120, 223–232. https://doi.org/10.1007/978-1-0716-0327-7_16 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kim, J. et al. Invasive bladder cancer: Genomic insights and therapeutic promise. Clin. Cancer Res 21, 4514–4524. https://doi.org/10.1158/1078-0432.CCR-14-1215 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421. https://doi.org/10.1038/nature12477 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 11, 367. https://doi.org/10.1186/1471-2105-11-367 (2010).Article 
CAS 

Google Scholar 
Manders, F. et al. MutationalPatterns: The one stop shop for the analysis of mutational processes. BMC Genom. 23, 134. https://doi.org/10.1186/s12864-022-08357-3 (2022).Article 

Google Scholar 
Lee, W. C. et al. Multiomics profiling of primary lung cancers and distant metastases reveals immunosuppression as a common characteristic of tumor cells with metastatic plasticity. Genome Biol. 21, 271. https://doi.org/10.1186/s13059-020-02175-0 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ye, Z. et al. Prevalent homozygous deletions of type I interferon and defensin genes in human cancers associate with immunotherapy resistance. Clin. Cancer Res. 24, 3299–3308. https://doi.org/10.1158/1078-0432.CCR-17-3008 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sinha, R. et al. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection. Nat. Commun. 8, 15165. https://doi.org/10.1038/ncomms15165 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Abkevich, V. et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br. J. Cancer 107, 1776–1782. https://doi.org/10.1038/bjc.2012.451 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Popova, T. et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 72, 5454–5462. https://doi.org/10.1158/0008-5472.CAN-12-1470 (2012).Article 
CAS 
PubMed 

Google Scholar 
Birkbak, N. J. et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2, 366–375. https://doi.org/10.1158/2159-8290.CD-11-0206 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marquard, A. M. et al. Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests novel indications for existing cancer drugs. Biomark Res. 3, 9. https://doi.org/10.1186/s40364-015-0033-4 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Rees, M. G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12, 109–116. https://doi.org/10.1038/nchembio.1986 (2016).Article 
CAS 
PubMed 

Google Scholar 
Yu, C. et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat. Biotechnol. 34, 419–423. https://doi.org/10.1038/nbt.3460 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, C. et al. Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: An in silico strategy towards precision oncology. Brief Bioinform. https://doi.org/10.1093/bib/bbaa164 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508. https://doi.org/10.1038/s41586-019-1186-3 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maeser, D., Gruener, R. F. & Huang, R. S. Oncopredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform https://doi.org/10.1093/bib/bbab260 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles