Aerobic mechanochemical reversible-deactivation radical polymerization

Vandenburgh, H. & Kaufman, S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203, 265–268 (1979).ADS 
CAS 
PubMed 

Google Scholar 
Olsen, L., Nicoll, J. & Fry, A. The skeletal muscle fiber: a mechanically sensitive cell. Eur. J. Appl. Physiol. 119, 333–349 (2019).PubMed 

Google Scholar 
Trommelen, J., Betz, M. W. & van Loon, L. J. C. The muscle protein synthetic response to meal ingestion following resistance-type exercise. Sports Med. 49, 185–197 (2019).PubMed 

Google Scholar 
Staudinger, H. & Bondy, H. F. Isoprene and rubber. XIX. The molecular size of rubber and balata. Rubber Chem. Technol. 3, 519–521 (1930).CAS 

Google Scholar 
Kauzmann, W. & Eyring, H. The viscous flow of large molecules. J. Am. Chem. Soc. 62, 3113–3125 (1940).CAS 

Google Scholar 
Smith, L. M., Aitken, H. M. & Coote, M. L. The fate of the peroxyl radical in autoxidation: how does polymer degradation really occur? Acc. Chem. Res. 51, 2006–2013 (2018).CAS 
PubMed 

Google Scholar 
Fan, G., Graham, A. J., Kolli, J., Lynd, N. A. & Keitz, B. K. Aerobic radical polymerization mediated by microbial metabolism. Nat. Chem. 12, 638–646 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
Enciso, A. E., Fu, L., Russell, A. J. & Matyjaszewski, K. A breathing atom-transfer radical polymerization: fully oxygen-tolerant polymerization inspired by aerobic respiration of cells. Angew. Chem. Int. Ed. 57, 933–936 (2018).CAS 

Google Scholar 
Reyhani, A. et al. Blood-catalyzed RAFT polymerization. Angew. Chem. Int. Ed. 57, 10288–10292 (2018).CAS 

Google Scholar 
Bennett, M. R. et al. Oxygen-tolerant RAFT polymerization initiated by living bacteria. ACS Macro Lett. 11, 954–960 (2022).CAS 
PubMed 
PubMed Central 

Google Scholar 
Nothling, M. D. et al. Bacterial redox potential powers controlled radical polymerization. J. Am. Chem. Soc. 143, 286–293 (2021).CAS 
PubMed 

Google Scholar 
Levy, A., Feinstein, R. & Diesendruck, C. E. Mechanical unfolding and thermal refolding of single-chain nanoparticles using ligand–metal bonds. J. Am. Chem. Soc. 141, 7256–7260 (2019).CAS 
PubMed 

Google Scholar 
Kubota, K., Pang, Y., Miura, A. & Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 366, 1500–1504 (2019).ADS 
CAS 
PubMed 

Google Scholar 
Piermattei, A., Karthikeyan, S. & Sijbesma, R. P. Activating catalysts with mechanical force. Nat. Chem. 1, 133–137 (2009).CAS 
PubMed 

Google Scholar 
Tennyson, A. G., Wiggins, K. M. & Bielawski, C. W. Mechanical activation of catalysts for C−C bond forming and anionic polymerization reactions from a single macromolecular reagent. J. Am. Chem. Soc. 132, 16631–16636 (2010).CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Bio-inspired mechanically adaptive materials through vibration-induced crosslinking. Nat. Mater. 20, 869–874 (2021).ADS 
CAS 
PubMed 

Google Scholar 
Xia, H. & Wang, Z. Piezoelectricity drives organic synthesis. Science 366, 1451–1452 (2019).ADS 
CAS 
PubMed 

Google Scholar 
Wang, J.-S. & Matyjaszewski, K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614–5615 (1995).CAS 

Google Scholar 
Matyjaszewski, K., Gaynor, S. & Wang, J.-S. Controlled radical polymerizations: the use of alkyl iodides in degenerative transfer. Macromolecules 28, 2093–2095 (1995).ADS 
CAS 

Google Scholar 
Goto, A. et al. Mechanism-based invention of high-speed living radical polymerization using organotellurium compounds and azo-initiators. J. Am. Chem. Soc. 125, 8720–8721 (2003).CAS 
PubMed 

Google Scholar 
Mohapatra, H., Kleiman, M. & Esser-Kahn, A. P. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem. 9, 135–139 (2017).CAS 

Google Scholar 
Wang, Z. et al. Enhancing mechanically induced ATRP by promoting interfacial electron transfer from piezoelectric nanoparticles to Cu catalysts. Macromolecules 50, 7940–7948 (2017).ADS 
CAS 

Google Scholar 
Wang, Z. et al. Temporal control in mechanically controlled atom transfer radical polymerization using low ppm of Cu catalyst. ACS Macro Lett. 6, 546–549 (2017).CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Ultrasonication-induced aqueous atom transfer radical polymerization. ACS Macro Lett. 7, 275–280 (2018).CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Atom transfer radical polymerization enabled by sonochemically labile cu-carbonate species. ACS Macro Lett. 8, 161–165 (2019).CAS 
PubMed 

Google Scholar 
Cho, H. Y. & Bielawski, C. W. Atom transfer radical polymerization in the solid-state. Angew. Chem. Int. Ed. 59, 13929–13935 (2020).CAS 

Google Scholar 
Ding, C. et al. Piezoelectrically mediated reversible addition–fragmentation chain-transfer polymerization. Macromolecules 55, 4056–4063 (2022).ADS 
CAS 

Google Scholar 
Wang, C. et al. Sonochemistry-assisted photocontrolled atom transfer radical polymerization enabled by manganese carbonyl. Polym. Chem. 13, 4908–4914 (2022).CAS 

Google Scholar 
Zeitler, S. M., Chakma, P. & Golder, M. R. Diaryliodonium salts facilitate metal-free mechanoredox free radical polymerizations. Chem. Sci. 13, 4131–4138 (2022).CAS 
PubMed 
PubMed Central 

Google Scholar 
Chakma, P. et al. Mechanoredox catalysis enables a sustainable and versatile reversible addition-fragmentation chain transfer polymerization process. Angew. Chem. Int. Ed. 62, e202215733 (2023).CAS 

Google Scholar 
Nothling, M. D., Daniels, J. E., Vo, Y., Johan, I. & Stenzel, M. H. Mechanically activated solid-state radical polymerization and cross-linking via piezocatalysis. Angew. Chem. Int. Ed. 62, e202218955 (2023).CAS 

Google Scholar 
Zhou, M. et al. Mechanically driven atom transfer radical polymerization by piezoelectricity. ACS Macro Lett. 12, 26–32 (2023).CAS 
PubMed 

Google Scholar 
Li, Z. et al. Mechanoluminescent materials enable mechanochemically controlled atom transfer radical polymerization and polymer mechanotransduction. Research 6, 0243 (2023).CAS 
PubMed 
PubMed Central 

Google Scholar 
Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363, 504–508 (2019).ADS 
CAS 
PubMed 

Google Scholar 
Mu, Q. et al. Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat. Commun. 13, 6213 (2022).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gordon, M. B. et al. Force-induced cleavage of a labile bond for enhanced mechanochemical crosslinking. Polym. Chem. 8, 6485–6489 (2017).CAS 

Google Scholar 
Seshimo, K. et al. Segmented polyurethane elastomers with mechanochromic and self-strengthening functions. Angew. Chem. Int. Ed. 60, 8406–8409 (2021).
Google Scholar 
Chapman, R., Gormley, A. J., Herpoldt, K.-L. & Stevens, M. M. Highly controlled open vessel RAFT polymerizations by enzyme degassing. Macromolecules 47, 8541–8547 (2014).ADS 
CAS 

Google Scholar 
Lv, C., He, C. & Pan, X. Oxygen-initiated and regulated controlled radical polymerization under ambient conditions. Angew. Chem. Int. Ed. 57, 9430–9433 (2018).CAS 

Google Scholar 
Wang, Y., Wang, Q. & Pan, X. Controlled radical polymerization toward ultra-high molecular weight by rationally designed borane radical initiators. Cell Reports Physical. Cell Rep. Phys. Sci. 1, 100073 (2020).
Google Scholar 
Szczepaniak, G., Łagodzińska, M., Dadashi-Silab, S., Gorczyński, A. & Matyjaszewski, K. Fully oxygen-tolerant atom transfer radical polymerization triggered by sodium pyruvate. Chem. Sci. 11, 8809–8816 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
Liarou, E. et al. Copper-mediated polymerization without external deoxygenation or oxygen scavengers. Angew. Chem. Int. Ed. 57, 8998–9002 (2018).CAS 

Google Scholar 
Vandenbergh, J., Schweitzer-Chaput, B., Klussmann, M. & Junkers, T. Acid-induced room temperature RAFT polymerization: synthesis and mechanistic insights. Macromolecules 49, 4124–4135 (2016).ADS 
CAS 

Google Scholar 
Gormley, A. J. et al. An oxygen-tolerant PET-RAFT polymerization for screening structure–activity relationships. Angew. Chem. Int. Ed. 57, 1557–1562 (2018).CAS 

Google Scholar 
Xu, J., Jung, K., Atme, A., Shanmugam, S. & Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 136, 5508–5519 (2014).CAS 
PubMed 

Google Scholar 
Theodorou, A. et al. Protein-polymer bioconjugates via a versatile oxygen tolerant photoinduced controlled radical polymerization approach. Nat. Commun. 11, 1486 (2020).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yeow, J., Chapman, R., Gormley, A. J. & Boyer, C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem. Soc. Rev. 47, 4357–4387 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
Hermansen, L., Hultman, E. & Saltin, B. Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand. 71, 129–139 (1967).CAS 
PubMed 

Google Scholar 
VØLlestad, N. K. & Blom, P. C. S. Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol. Scand. 125, 395–405 (1985).PubMed 

Google Scholar 
Murray, B. & Rosenbloom, C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 76, 243–259 (2018).PubMed 
PubMed Central 

Google Scholar 
Hargreaves, M. Muscle glycogen and metabolic regulation. Proc. Nutr. Soc. 63, 217–220 (2004).CAS 
PubMed 

Google Scholar 
Fedorov, A. V., Ermoshkin, A. A., Mejiritski, A. & Neckers, D. C. New method to reduce oxygen surface inhibition by photorelease of boranes from borane/amine complexes. Macromolecules 40, 3554–3560 (2007).ADS 
CAS 

Google Scholar 
Wilson, O. R. & Magenau, A. J. D. Oxygen tolerant and room temperature RAFT through alkylborane initiation. ACS Macro Lett. 7, 370–375 (2018).CAS 
PubMed 

Google Scholar 
Imato, K. et al. Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew. Chem. Int. Ed. 54, 6168–6172 (2015).CAS 

Google Scholar 
Benassi, E. & Fan, H. Quantitative characterisation of the ring normal modes. Pyridine as a study case. Spectrochim. Acta Part A 246, 119026 (2021).CAS 

Google Scholar 
Chakraborty, S. & Dopfer, O. Infrared spectrum of the Ag+–(pyridine)2 ionic complex: probing interactions in artificial metal-mediated base pairing. ChemPhysChem 12, 1999–2008 (2011).CAS 
PubMed 

Google Scholar 
Lu, C.-H., Huang, C.-F., Kuo, S.-W. & Chang, F.-C. Synthesis and characterization of poly(ε-caprolactone-b-4-vinylpyridine): initiation, polymerization, solution morphology, and gold metalation. Macromolecules 42, 1067–1078 (2009).ADS 
CAS 

Google Scholar 
An, Q. et al. Identification of alkoxy radicals as hydrogen atom transfer agents in Ce-catalyzed C–H functionalization. J. Am. Chem. Soc. 145, 359–376 (2023).CAS 
PubMed 

Google Scholar 
Zhong, P.-F. et al. Photoelectrochemical oxidative C(sp3)−H borylation of unactivated hydrocarbons. Nat. Commun. 14, 6530 (2023).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luan, B., Muir, B. W., Zhu, J. & Hao, X. A RAFT copolymerization of NIPAM and HPMA and evaluation of thermo-responsive properties of poly(NIPAM-co-HPMA). RSC Adv. 6, 89925–89933 (2016).ADS 
CAS 

Google Scholar 
Bigot, J. et al. Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): a new class of amphiphilic polymer for the creation of multistimuli responsive micelles. J. Am. Chem. Soc. 132, 10796–10801 (2010).CAS 
PubMed 

Google Scholar 
Wang, C. et al. Tribochemically controlled atom transfer radical polymerization enabled by contact electrification. Angew. Chem. Int. Ed. 62, e202309440 (2023).CAS 

Google Scholar 
Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15, 148–155 (2021).ADS 
CAS 

Google Scholar 
Chen, C. et al. Perovskite solar cells based on screen-printed thin films. Nature 612, 266–271 (2022).ADS 
CAS 
PubMed 

Google Scholar 
Sun, K. et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307–310 (2022).ADS 
CAS 
PubMed 

Google Scholar 
Hu, X.-G., Lin, Z., Ding, L. & Chang, J. Recent advances of carbon nanotubes in perovskite solar cells. SusMat 3, 639–670 (2023).CAS 

Google Scholar 
Sun, L. et al. Zero-waste emission design of sustainable and programmable actuators. SusMat 3, 207–221 (2023).CAS 

Google Scholar 
Kim, Y.-H. et al. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17, 590–597 (2022).ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar 
Hu, H. et al. Novel MAPbBr3 perovskite/ polymer nanocomposites with luminescence and self-healing properties: In suit fabrication and structure characterization. Optical Mater. 119, 111405 (2021).CAS 

Google Scholar 
Wang, D. et al. A room temperature route toward in situ crystallization of perovskite nanocrystals induced by acrylic acid for flexible free-standing luminescent gels. Adv. Funct. Mater. 33, 2206696 (2023).CAS 

Google Scholar 

Hot Topics

Related Articles