Exploring the nuclear proteins, viral capsid protein, and early antigen protein using immunoinformatic and molecular modeling approaches to design a vaccine candidate against Epstein Barr virus

Nowalk, A. & Green, M. Epstein–Barr virus. Microbiol. Spectr. 4(3), 3–4 (2016).Article 

Google Scholar 
Martorelli, D. et al. Exploiting the interplay between innate and adaptive immunity to improve immunotherapeutic strategies for Epstein–Barr-virus-driven disorders. J. Immunol. Res. https://doi.org/10.1155/2012/931952 (2012).Article 

Google Scholar 
Longnecker, R. M., Kieff, E. & Cohen, J. I. Epstein–Barr virus. In Fields Virology 6th edn (Wolters Kluwer Health Adis (ESP), 2013).Thorley-Lawson, D. A., Hawkins, J. B., Tracy, S. I. & Shapiro, M. The pathogenesis of Epstein–Barr virus persistent infection. Curr. Opin. Virol. 3(3), 227–232 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, F. et al. A subpopulation of normal B cells latently infected with Epstein–Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP1. J. Virol. 69(6), 3752–3758 (1995).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Babcock, G. J., Hochberg, D. & Thorley-Lawson, D. A. The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13(4), 497–506 (2000).Article 
CAS 
PubMed 

Google Scholar 
Dolcetti, R. & Masucci, M. G. Epstein–Barr virus: Induction and control of cell transformation. J. Cell. Physiol. 196(2), 207–218 (2003).Article 
CAS 
PubMed 

Google Scholar 
Ojo, T. O. et al. Hitting Epstein Barr virus where it hurts: Computational methods exploration for siRNA therapy in alleviating Epstein Barr virus-induced multiple sclerosis. Neurogenetics https://doi.org/10.1007/s10048-024-00764-w (2024).Article 
PubMed 

Google Scholar 
Cohen, J. I. Epstein–Barr virus vaccines. Clin. Transl. Immunol. https://doi.org/10.1038/cti.2014.27 (2015).Article 

Google Scholar 
Hjalgrim, H. et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N. Engl. J. Med. 349(14), 1324–1332 (2003).Article 
CAS 
PubMed 

Google Scholar 
Bukhari, S. N. H., Jain, A., Haq, E. & Mehbodniya, A. Machine learning techniques for the prediction of B-cell and T-cell epitopes as potential vaccine targets with a specific focus on SARS-CoV-2 pathogen: A review. Pathogens 11, 146 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oladipo, E. K. et al. Proteome based analysis of circulating SARS-CoV-2 variants: Approach to a universal vaccine candidate. Genes Genomics https://doi.org/10.1007/s13258-023-01426-1 (2023).Article 
PubMed 

Google Scholar 
Bukhari, S. N. H., Webber, J. & Mehbodniya, A. Decision tree based ensemble machine learning model for the prediction of Zika virus T-cell epitopes as potential vaccine candidates. Sci. Rep. 12(1), 1–11. https://doi.org/10.1038/s41598-022-11731-6 (2022).Article 
CAS 

Google Scholar 
Zanella, L. et al. A reliable Epstein–Barr Virus classification based on phylogenomic and population analyses. Sci. Rep. 9, 9829. https://doi.org/10.1038/s41598-019-45986-3 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gul, H. et al. Infection, genetics and evolution subtractive proteomics and immunoinformatics approaches to explore Bartonella bacilliformis proteome (virulence factors) to design B and T cell multi-epitope subunit vaccine. Infect. Genet. Evol. 85(April), 104551. https://doi.org/10.1016/j.meegid.2020.104551 (2020).Article 
CAS 
PubMed 

Google Scholar 
Saha, S. & Raghava, G. P. S. SHORT COMMUNICATION Prediction of continuous B-cell epitopes in an antigen using recurrent neural network proteins. Struct. Funct. Bioinform. 48(March), 40–48. https://doi.org/10.1002/prot (2006).Article 

Google Scholar 
Saha, S. & Raghava, G. P. S. BcePred: Prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. 197–204 (2004).Long, H. M., Meckiff, B. J. & Taylor, G. S. The T-cell response to Epstein–Barr virus—New tricks from an old dog. Front. Immunol. 10(September), 1–11. https://doi.org/10.3389/fimmu.2019.02193 (2019).Article 
CAS 

Google Scholar 
Andreatta, M. & Nielsen, M. Sequence analysis Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics https://doi.org/10.1093/bioinformatics/btv639 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Abdulla, F. et al. Microbial Pathogenesis A comprehensive screening of the whole proteome of hantavirus and designing a multi-epitope subunit vaccine for cross-protection against hantavirus: Structural vaccinology and immunoinformatics study. Microb. Pathog. 150(December 2020), 104705. https://doi.org/10.1016/j.micpath.2020.104705 (2021).Article 
CAS 
PubMed 

Google Scholar 
Macarthur, G. J., Wilson, A. D., Birchall, M. A. & Morgan, A. J. Primary CD4+ T-cell responses provide both helper and cytotoxic functions during Epstein–Barr virus infection and transformation of fetal cord blood B cells. J. Virol. 81(9), 4766–4775. https://doi.org/10.1128/JVI.02608-06 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Reynisson, B. et al. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48(May), 449–454. https://doi.org/10.1093/nar/gkaa379 (2020).Article 
CAS 

Google Scholar 
Oluwagbemi, O. O. et al. Bioinformatics, computational informatics, and modeling approaches to the design of mRNA COVID-19 vaccine candidates. Computation 10, 117 (2022).Article 
CAS 

Google Scholar 
Dhanda, S. K., Vir, P. & Raghava, G. P. S. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct 8, 1–15 (2013).Article 

Google Scholar 
Dhanda, S. K., Gupta, S., Vir, P. & Raghava, G. P. S. Prediction of IL4 inducing peptides. J. Immunol. Res. 2013, 263952 (2013).
Google Scholar 
Ahammad, I. & Lira, S. S. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2020.06.213 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 7, 1–7. https://doi.org/10.1186/1471-2105-8-4 (2007).Article 
CAS 

Google Scholar 
Bravo, J. H., Farías, J. G., Parraguez, F., Lisandra, C. & Belén, H. VirVACPRED: A web server for prediction of protective viral antigens. Int. J. Peptide Res. Ther. 28(1), 1–8. https://doi.org/10.1007/s10989-021-10345-2 (2022).Article 
CAS 

Google Scholar 
Abbas, G., Zafar, I., Ahmad, S. & Azam, S. S. Immunoinformatics design of a novel multi-epitope peptide vaccine to combat multi-drug resistant infections caused by Vibrio vulnificus. Eur. J. Pharm. Sci. https://doi.org/10.1016/j.ejps.2019.105160 (2019).Article 
PubMed 

Google Scholar 
Awadelkareem, E. A. & Ali, S. A. Vaccine design of coronavirus spike (S) glycoprotein in chicken: Immunoinformatics and computational approaches. Transl. Med. Commun. 5, 1–16 (2020).Article 

Google Scholar 
Dimitrov, I., Bangov, I. & Flower, D. R. AllerTOP v.2—A server for in silico prediction of allergens. J. Mol. Model. https://doi.org/10.1007/s00894-014-2278-5 (2014).Article 
PubMed 

Google Scholar 
Gupta, N. & Kumar, A. Designing an efficient multi-epitope vaccine against Campylobacter jejuni using immunoinformatics and reverse vaccinology approach. Microb. Pathog. 147(May), 104398. https://doi.org/10.1016/j.micpath.2020.104398 (2020).Article 
CAS 
PubMed 

Google Scholar 
Muhammad, S. A. et al. Polyvalent therapeutic vaccine for type 2 diabetes mellitus: Immunoinformatics approach to study co-stimulation of cytokines and GLUT1 receptors. BMC Mol. Cell Biol. 21, 1–17 (2020).Article 

Google Scholar 
Ferris, L. K. et al. Human Beta Defensin 3 induces maturation of human langerhans cell like dendritic cells: An antimicrobial peptide that functions as an endogenous adjuvant Laura. J. Investig. Dermatol. 133(2), 460–468. https://doi.org/10.1038/jid.2012.319 (2013).Article 
CAS 
PubMed 

Google Scholar 
Lai, Y. et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J. Investig. Dermatol. 130(9), 2211–2221. https://doi.org/10.1038/jid.2010.123 (2010).Article 
CAS 
PubMed 

Google Scholar 
Mcglasson, S. L., Semple, F., Macpherson, H., Gray, M. & Donald, J. Human β-defensin 3 increases the TLR9-dependent response to bacterial DNA. Eur. J. Immunol. 47, 658–664. https://doi.org/10.1002/eji.201646799 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oladipo, E. K. et al. Designing a conserved peptide-based subunit vaccine against SARS-CoV-2 using immunoinformatics approach. In Silico Pharmacol. https://doi.org/10.1007/s40203-020-00062-x (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Bin, S. et al. Exploring Lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. Int. J. Peptide Res. Ther. https://doi.org/10.1007/s10989-019-10003-8 (2020).Article 

Google Scholar 
Rabienia, M. et al. Exploring membrane proteins of Leishmania major to design a new multi-epitope vaccine using immunoinformatics approach. Eur. J. Pharm. Sci. https://doi.org/10.1016/j.ejps.2020.105423 (2020).Article 
PubMed 

Google Scholar 
Nguyen, M. N. et al. AllerCatPro 2.0: A web server for predicting protein allergenicity potential. Nucleic Acids Res. 50(May), 36–43 (2022).Article 

Google Scholar 
Sharma, N., Naorem, L. D., Jain, S. & Raghava, G. P. S. ToxinPred2: An improved method for predicting toxicity of proteins. Brief. Bioinform. 23(5), 1–12. https://doi.org/10.1093/bib/bbac174 (2022).Article 
CAS 

Google Scholar 
Pan, X. et al. ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinform. 36(21), 5159–5168. (Oxford University Press, 2020).Pyasi, S., Sharma, V., Dipti, K. & Jonniya, N. A. Immunoinformatics approach to design multi-epitope—Subunit vaccine against bovine ephemeral fever disease. Vaccines 9(8), 925 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jan, D. L. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN- and IL-2. J. Exp. Med. 205(8), 1763–1773. https://doi.org/10.1084/jem.20072397 (2008).Article 
CAS 

Google Scholar 
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. & Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server 571–608 (2005).Geourjon, C. & Deleage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6), 681–684 (1995).Article 
CAS 

Google Scholar 
Oladipo, E. K. et al. Immunoinformatics design of multi-epitope peptide for the diagnosis of Schistosoma haematobium infection immunoinformatics design of multi-epitope peptide for the diagnosis of. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2022.2111358 (2022).Article 
PubMed 

Google Scholar 
Kumar, N., Sood, D., Sharma, N. & Chandra, R. Multiepitope subunit vaccine to evoke immune response against acute encephalitis. J. Chem. Inf. Model. https://doi.org/10.1021/acs.jcim.9b01051 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Zheng, W. et al. Article Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations ll Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep. Methods 1(3), 100014. https://doi.org/10.1016/j.crmeth.2021.100014 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heo, L., Park, H. & Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 41(June), 384–388. https://doi.org/10.1093/nar/gkt458 (2013).Article 

Google Scholar 
Sanches, R. C. O. et al. Immunoinformatics design of multi-epitope peptide-based vaccine against Schistosoma mansoni using transmembrane proteins as a target. Front. Immunol. 12(March), 1–16. https://doi.org/10.3389/fimmu.2021.621706 (2021).Article 
CAS 

Google Scholar 
Anderson, R. J., Weng, Z., Campbell, R. K. & Jiang, X. Main-chain conformational tendencies of amino acids. Proteins Struct. Funct. Bioinform. 689(March), 679–689. https://doi.org/10.1002/prot.20530 (2005).Article 
CAS 

Google Scholar 
Craig, D. B. & Dombkowski, A. A. Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinform. 14, 1–7 (2013).Article 

Google Scholar 
Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, 407–410. https://doi.org/10.1093/nar/gkm290 (2007).Article 

Google Scholar 
Hossain, S., Imran, M., Mizan, S., Tayab, A. & Sultana, A. Informatics in medicine unlocked immunoinformatics approach to designing a multi-epitope vaccine against Saint Louis Encephalitis Virus. Inform. Med. Unlocked 22, 100500. https://doi.org/10.1016/j.imu.2020.100500 (2021).Article 

Google Scholar 
Abdeen, T. O. et al. Structure-based computational design of novel covalent binders for the treatment of sickle cell disease. J. Mol. Graph. Model. 124(May), 108549. https://doi.org/10.1016/j.jmgm.2023.108549 (2023).Article 
CAS 

Google Scholar 
Aminnezhad, S., Abdi-ali, A., Ghazanfari, T. & Bandehpour, M. Immunoinformatics design of multivalent chimeric vaccine for modulation of the immune system in Pseudomonas aeruginosa infection. Infect. Genet. Evol. 85(April), 104462. https://doi.org/10.1016/j.meegid.2020.104462 (2020).Article 
CAS 
PubMed 

Google Scholar 
Shahid, F., Ashfaq, U. A., Javaid, A. & Khalid, H. Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. Infect. Genet. Evol. 80(January), 104199. https://doi.org/10.1016/j.meegid.2020.104199 (2020).Article 
CAS 
PubMed 

Google Scholar 
Varadi, M. et al. NAR Breakthrough Article AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50(November 2021), 439–444 (2022).Article 

Google Scholar 
Ray, G. B. & Cook, J. W. Molecular modeling of heme proteins using MOE. Biochem. Mol. Biol. Educ. 33(3), 194–201 (2005).Article 
CAS 
PubMed 

Google Scholar 
Laskowski, R. A. & Thornton, J. M. PDBsum extras: SARS-CoV-2 and AlphaFold models. Protein Sci. https://doi.org/10.1002/pro.4238 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Jakhar, R. 3CL hydrolase-based multiepitope peptide vaccine against SARS-CoV-2 using immunoinformatics. J. Med. Virol. https://doi.org/10.1002/jmv.25993 (2020).Article 
PubMed 

Google Scholar 
Adelusi, T. I., Abdul-hammed, M., Idris, M. O., Oyedele, Q. K. & Adedotun, I. O. Molecular dynamics, quantum mechanics and docking studies of some Keap1 inhibitor—An insight into the atomistic mechanisms of their antioxidant potential. HELIYON https://doi.org/10.1016/j.heliyon.2021.e07317 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Kumar, J., Qureshi, R., Sagurthi, S. R. & Ahmed, I. Designing of nucleocapsid protein based novel multi-epitope vaccine against SARS-COV-2 using immunoinformatics approach. Int. J. Peptide Res. Ther. 27(2), 941–956. https://doi.org/10.1007/s10989-020-10140-5 (2021).Article 
CAS 

Google Scholar 
Kuriata, A. et al. CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Res. 46(May), 338–343. https://doi.org/10.1093/nar/gky356 (2018).Article 
CAS 

Google Scholar 
Jamroz, M., Kolinski, A. & Kmiecik, S. CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics https://doi.org/10.1093/bioinformatics/btu184 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Rapin, N., Lund, O., Bernaschi, M. & Castiglione, F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One https://doi.org/10.1371/journal.pone.0009862 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Hawkins, T., Chitale, M., Luban, S. & Kihara, D. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data. Proteins Struct. Funct. Bioinform. https://doi.org/10.1002/prot.22172 (2008).Article 

Google Scholar 
No, B. et al. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 33, 526–531. https://doi.org/10.1093/nar/gki376 (2005).Article 
CAS 

Google Scholar 
Shams, M. et al. Construction of a multi-epitope protein for human Toxocara canis detection: Immunoinformatics approach multi-epitope construct for T. canis serodiagnosis. Inform. Med. Unlocked 26(September), 100732. https://doi.org/10.1016/j.imu.2021.100732 (2021).Article 

Google Scholar 
Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A. & Ghahremani, F. Exploring the out-of-sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine https://doi.org/10.1016/j.vaccine.2020.10.016 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ali, A. et al. Immunoinformatic and systems biology approaches to predict and validate peptide vaccines against Epstein–Barr virus (EBV). Sci. Rep. https://doi.org/10.1038/s41598-018-37070-z (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Cohen, J. I. Vaccine development for Epstein–Barr. Virus. 2018, 477–493. https://doi.org/10.1007/978-981-10-7230-7 (2018).Article 

Google Scholar 
Cui, X. & Snapper, C. M. Epstein Barr virus: Development of vaccines and immune cell therapy for EBV-associated diseases. Front. Immunol. 12(October), 1–16. https://doi.org/10.3389/fimmu.2021.734471 (2021).Article 
CAS 

Google Scholar 
Moin, A. T. et al. Immunoinformatics approach to design novel subunit vaccine against the Epstein–Barr virus. Microbiol. Spectrum 10(5), e01151-22 (2022).Article 

Google Scholar 
Cludts, I. & Farrell, P. J. Multiple functions within the Epstein–Barr virus EBNA-3A protein. J. Virol. 72(3), 1862–1869 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mu, J. & Wang, F. Species-specific functions of Epstein–Barr virus nuclear antigen 2 (EBNA2) reveal dual roles for initiation and maintenance of B cell immortalization. PLoS Pathogens 2(Lcv), 1–22 (2017).
Google Scholar 
Schlee, M. et al. Identification of Epstein–Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: Activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J. Virol. 78(8), 3941–3952. https://doi.org/10.1128/JVI.78.8.3941 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lanz, T. V., Brewer, R. C., Jude, K. M. & Fernandez, D. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Farrell, C. J. et al. Inhibition of Epstein–Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proc. Natl. Acad. Sci. 101(13), 4625–4630 (2004).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Farina, A. et al. Epstein–Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes. Arthritis Res. Ther. 19(1), 1–14. https://doi.org/10.1186/s13075-017-1237-9 (2017).Article 
CAS 

Google Scholar 
Jangra, S., Yuen, K. S., Botelho, M. G. & Jin, D. Y. Epstein–Barr virus and innate immunity: Friends or foes?. Microorganisms 7(6), 1–23. https://doi.org/10.3390/microorganisms7060183 (2019).Article 
CAS 

Google Scholar 
Madlala, T. et al. Designing multiepitope-based vaccine against Eimeria from immune mapped protein 1 (IMP-1) antigen using immunoinformatic approach. Sci. Rep. https://doi.org/10.1038/s41598-021-97880-6 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Oladipo, E. K. et al. Bioinformatics analysis of structural protein to approach a vaccine candidate against Vibrio cholerae infection. Immunogenetics 75(2), 99–114. https://doi.org/10.1007/s00251-022-01282-5 (2023).Article 
CAS 
PubMed 

Google Scholar 
Rawal, K. et al. Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Sci. Rep. 0123456789, 1–25. https://doi.org/10.1038/s41598-021-96863-x (2021).Article 
CAS 

Google Scholar 
Ebrahimi, M., Javad, S., Mohammad, S., Ranjbar, M. & Tahvildar, F. Designing and modeling of multi-epitope proteins for diagnosis of Toxocara canis infection. Int. J. Peptide Res. Ther. https://doi.org/10.1007/s10989-019-09940-1 (2019).Article 

Google Scholar 
Mahmud, S. et al. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci. Rep. https://doi.org/10.1038/s41598-021-92176-1 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Khalid, H. & Ashfaq, U. A. Exploring HCV genome to construct multi-epitope based subunit vaccine to battle HCV infection: Immunoinformatics based approach. J. Biomed. Inform. 108(May), 103498. https://doi.org/10.1016/j.jbi.2020.103498 (2020).Article 
PubMed 

Google Scholar 
Kadam, A., Sasidharan, S. & Saudagar, P. Computational design of a potential multi-epitope subunit vaccine using immunoinformatics to fight Ebola virus. Infect. Genet. Evol. 85(May), 104464. https://doi.org/10.1016/j.meegid.2020.104464 (2020).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles