The essential role of cement-based materials in a radioactive waste repository

Ochs, M., Mallants, D. & Wang, L. Radionuclide and metal sorption on cement and concrete. 2 (Springer, 2016).International Atomic Energy Agency. Classification of Radioactive Waste, IAEA Safety Standards Series No. GSG-1 (IAEA, 2009).Glasser, F. P. Cements in Radioactive Waste Disposal (International Atomic Energy Agency, 2013).Ma, B., Charlet, L., Fernandez-Martinez, A., Kang, M. & Madé, B. A review of the retention mechanisms of redox-sensitive radionuclides in multi-barrier systems. Appl. Geochem. 100, 414–431 (2019).Article 
CAS 

Google Scholar 
Zou, L. & Cvetkovic, V. Disposal of high-level radioactive waste in crystalline rock: On coupled processes and site development. Rock Mech. Bull. 2, 100061 (2023).Article 

Google Scholar 
Samper, J. et al. Conceptual model formulation for a mechanistic based model implementing the initial SOTA knowledge (models and parameters) in existing numerical tools. Deliverable D 2.16 of the HORIZON 2020 project EURAD. EC Grant agreement no: 847593. (European Joint Programme on Radioactive Waste Management (EURAD), 2022).Röhlig, K.-J. Nuclear Waste. ISBN: 978-0-7503-3095-4 (IOP Publishing, 2022).Rebolledo, N. et al. International RILEM Conference on Synergising expertise towards sustainability and robustness of CBMs and concrete structures. 879–890 (Springer, 2023).Verhoeven, B. et al. Pitting and General Corrosion Susceptibilities of Materials for High Level Radioactive Waste (HLW) Disposal. Mater. 15, 6464 (2022).Article 
CAS 

Google Scholar 
Guo, X., Gin, S. & Frankel, G. S. Review of corrosion interactions between different materials relevant to disposal of high-level nuclear waste. npj Mater. Degrad. 4, 34 (2020).Article 
CAS 

Google Scholar 
Nagra. Waste Management Programme 2021 of the Waste Producers. Nagra Technical Report NTB 21-01E. (Nagra, 2021).Andra. Safety Options Report – Operating Part (DoS-Expl). Report CG-TE-D-NTE-AMOA-SRr0000-5-0060 (Andra, 2016).Nagra. Modellhaftes Inventar für radioaktive Materialien MIRAM RBG. Nagra Technical Report NTB 22-05. (Nagra, 2023).International Atomic Energy Agency. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. IAEA-TECDOC-1701 (IAEA, 2013).Kosakowski, G., Huang, Y. & Wieland, E. Influence of material heterogeneities, process couplings and aggregate reactivity on the geochemical evolution of the L/ILW repository. Nagra Arbeitsbericht NAB 20-11 (Nagra, 2020).Ichikawa, N. & Hamamoto, T. Safety Function of Cementitious Materials and the Analytical Assessment of Long-Term Evolution of Cement-Bentonite Interface for Geological Disposal in Japan. J. Adv. Concr. Technol. 19, 1275–1284 (2021).Article 
CAS 

Google Scholar 
Kosakowski, G. et al. Geochemical Evolution of the L/ILW – Near Field. Nagra Technical Report NTB 23-03 (Nagra, 2023).Silva, O., Coene, E., Molinero, J., Lavina, M. & Idiart, A. E. Gas release from the BHK vault – Multiphase flow modelling of the near-field. SKB Report R-19-06 (SKB, 2019).Höglund, L. O. et al. Modelling of Chemical Influences from Posiva’s Low and Intermediate Level Waste Repository on the Spent Nuclear Fuel Repository. Working Report No. 2017-03 (Posiva Oy, 2018).Wilson, J., Bateman, K. & Tachi, Y. The impact of cement on argillaceous rocks in radioactive waste disposal systems: A review focusing on key processes and remaining issues. Appl. Geochem. 130, 104979 (2021).Article 
CAS 

Google Scholar 
Dauzeres, A. et al. Magnesium perturbation in low-pH concretes placed in clayey environment—solid characterizations and modeling. Cem. Concr. Res. 79, 137–150 (2016).Article 
CAS 

Google Scholar 
Jenni, A., Mäder, U., Lerouge, C., Gaboreau, S. & Schwyn, B. In situ interaction between different concretes and Opalinus Clay. Phys. Chem. Earth. ABC 70-71, 71–83 (2014).Article 

Google Scholar 
Mäder, U. et al. Mont Terri Rock Laboratory, 20 Years: Two Decades of Research and Experimentation on Claystones for Geological Disposal of Radioactive Waste (eds Bossart, P. & Milnes, A. G.) 309–329 (Springer International Publishing, 2018).Sharma, M., Bishnoi, S., Martirena, F. & Scrivener, K. Limestone calcined clay cement and concrete: A state-of-the-art review. Cem. Concr. Res. 149, 106564 (2021).Article 
CAS 

Google Scholar 
Fabian, M., Czompoly, O., Tolnai, I. & De Windt, L. Interactions between C-steel and blended cement in concrete under radwaste repository conditions at 80 °C. Sci. Rep. 13, 15372 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, J., Chen, L. & Wang, J. Solidification of radioactive wastes by cement-based materials. Prog. Nucl. Energy 141, 103957 (2021).Article 
CAS 

Google Scholar 
Rakhimova, N. Recent Advances in Alternative Cementitious Materials for Nuclear Waste Immobilization: A Review. Sustainability 15, 689 (2023).Article 
CAS 

Google Scholar 
Santi, A. et al. Design of sustainable geopolymeric matrices for encapsulation of treated radioactive solid organic waste. Front. Mater. 9, 1005864 (2022).Kearney, S. et al. Low Carbon Stabilization and Solidification of Hazardous Wastes 407–431 (Elsevier, 2022).Berner, U. Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Manage 12, 201–219 (1992).Article 
CAS 

Google Scholar 
Leemann, A., Shi, Z. & Lindgård, J. Characterization of amorphous and crystalline ASR products formed in concrete aggregates. Cem. Concr. Res. 137, 106190 (2020).Article 
CAS 

Google Scholar 
Leemann, A. et al. Alkali‐silica reaction–a multidisciplinary approach. RILEM Tech. Lett. 6, 169–187 (2021).Article 

Google Scholar 
Leemann, A., Katayama, T., Fernandes, I. & Broekmans, M. A. Types of alkali–aggregate reactions and the products formed. Proc. Inst. Civil Engineers Construction Mater. 169, 128–135 (2016).Article 

Google Scholar 
Thomas, M. D., Fournier, B. & Folliard, K. J. Alkali-aggregate reactivity (AAR) facts book (Office of Pavement Technology, Federal Highway Administration, United States, 2013).Grattan-Bellew, P. E., Mitchell, L. D., Margeson, J. & Min, D. Is alkali–carbonate reaction just a variant of alkali–silica reaction ACR=ASR? Cem. Concr. Res. 40, 556–562 (2010).Article 
CAS 

Google Scholar 
Katayama, T. The so-called alkali-carbonate reaction (ACR) — Its mineralogical and geochemical details, with special reference to ASR. Cem. Concr. Res. 40, 643–675 (2010).Article 
CAS 

Google Scholar 
Winter, N. B. Understanding cement: An introduction to cement production, cement hydration and deleterious processes in concrete (WHD Microanalysis Consultants, 2012).Lothenbach, B., Le Saout, G., Gallucci, E. & Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848–860 (2008).Article 
CAS 

Google Scholar 
Lothenbach, B. & Winnefeld, F. Thermodynamic modelling of the hydration of Portland cement. Cem. Concr. Res. 36, 209–226 (2006).Article 
CAS 

Google Scholar 
Gaucher, E. C. & Blanc, P. Cement/clay interactions–a review: experiments, natural analogues, and modeling. Waste Manage 26, 776–788 (2006).Article 
CAS 

Google Scholar 
Bernard, E., Jenni, A., Fisch, M., Grolimund, D. & Mäder, U. Micro-X-ray diffraction and chemical mapping of aged interfaces between cement pastes and Opalinus Clay. Appl. Geochem. 115, 104538 (2020).Article 
CAS 

Google Scholar 
Kosakowski, G. & Watanabe, N. OpenGeoSys-Gem: A numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Phys. Chem. Earth. ABC 70-71, 138–149 (2014).Article 

Google Scholar 
Cloet, V. et al. Cementitious backfill for a high-level waste repository: impact of repository induced effects. Nagra Technical Report NAB 18–41 (Nagra, 2018).Yokoyama, S. et al. Alteration of Bentonite Reacted with Cementitious Materials for 5 and 10 years in the Mont Terri Rock Laboratory (CI Experiment). Minerals 11, 251 (2021).Article 
CAS 

Google Scholar 
Lothenbach, B., Bernard, E. & Mäder, U. Zeolite formation in the presence of cement hydrates and albite. Phys. Chem. Earth. ABC 99, 77–94 (2017).Article 

Google Scholar 
Watson, C., Wilson, J., Savage, D. & Norris, S. Coupled reactive transport modelling of the international Long-Term Cement Studies project experiment and implications for radioactive waste disposal. Appl. Geochem. 97, 134–146 (2018).Article 
CAS 

Google Scholar 
Soler, J. M. & Mäder, K. Cement-rock interaction: Infiltration of a high-pH solution into a fractured granite core. Geol. Acta 8, 221–233 (2010).CAS 

Google Scholar 
Bateman, K. et al. Evolution of the Reaction and Alteration of Granite with Ordinary Portland Cement Leachates: Sequential Flow Experiments and Reactive Transport Modelling. Minerals 12, 883 (2022).Article 
CAS 

Google Scholar 
Szabó-Krausz, Z. et al. Signs of in-situ geochemical interactions at the granite–concrete interface of a radioactive waste disposal. Appl. Geochem. 126, 104881 (2021).Article 

Google Scholar 
Eichinger, F. & Waber, H. Matrix Porewater In Crystalline Rocks: Extraction and Analysis. NWMO TR-2013-23 (NWMO, 2013).Angst, U. M. et al. The steel–concrete interface. Mater. Struct. 50, 1–24 (2017).Article 

Google Scholar 
Stefanoni, M., Zhang, Z., Angst, U. M. & Elsener, B. The kinetic competition between transport and oxidation of ferrous ions governs precipitation of corrosion products in carbonated concrete. RILEM Tech. Lett. 3, 8–16 (2018).Wersin, P. et al. Interaction of corroding iron with eight bentonites in the alternative buffer materials field experiment (ABM2). Minerals 11, 907 (2021).Article 
CAS 

Google Scholar 
Leupin, O. X. et al. Anaerobic corrosion of carbon steel in bentonite: An evolving interface. Corros. Sci. 187, 109523 (2021).Article 
CAS 

Google Scholar 
Wieland, E., Miron, G. D., Ma, B., Geng, G. & Lothenbach, B. Speciation of iron(II/III) at the iron-cement interface: a review. Mater. Struct. 56, 31 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Windt, L. D., Miron, G. D., Fabian, M. & Wittebroodt, C. First results on the thermodynamic databases and reactive transport models for steel-cement interfaces at high temperature. Deliverable 28 of the HORIZON 2020 project EURADEC Grant agreement No. 847593 (2020).Shafizadeh, A. Neutron Imaging Study of Evolution of Structural and Transport Properties of Cement-Clay Interfaces. PhD Dissertation, (Universität Bern, Philosophisch-naturwissenschaftliche Fakultät, 2019).Blanc, P. et al. Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Appl. Geochem. 27, 2107–2116 (2012).Article 
CAS 

Google Scholar 
Lothenbach, B. et al. Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 115, 472–506 (2019).Article 
CAS 

Google Scholar 
Robie, R. A. & Hemingway, B. S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. 2131 (US Government Printing Office, 1995).Rozov, K. B., Berner, U., Kulik, D. A. & Diamond, L. W. Solubility and thermodynamic properties of carbonate-bearing hydrotalcite—pyroaurite solid solutions with a 3:1 Mg/(Al+Fe) mole ratio. Clays Clay Miner. 59, 215–232 (2011).Taylor, H. F. Cement Chemistry. 2 (Thomas Telford London, 1997).

Hot Topics

Related Articles