Tetrapod sperm length evolution in relation to body mass is shaped by multiple trade-offs

Kahrl, A. F., Snook, R. R. & Fitzpatrick, J. L. Fertilization mode drives sperm length evolution across the animal tree of life. Nat. Ecol. Evol. 5, 1153–1164 (2021).Article 
PubMed 

Google Scholar 
Gage, M. J. Sperm size evolution. Nat. Ecol. Evol. 5, 1064–1065 (2021).Article 
PubMed 

Google Scholar 
Lüpold, S. & Pitnick, S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 155, R229–R243 (2018).Article 
PubMed 

Google Scholar 
Pitnick, S., Hosken, D. J. & Birkhead, T. R. in Sperm Biology: An Evolutionary Perspective Ch. 3, 88–89 (Academic Press, 2009).Kahrl, A. F., Snook, R. R. & Fitzpatrick, J. L. Fertilization mode differentially impacts the evolution of vertebrate sperm components. Nat. Commun. 13, 6809 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Parker, G. A., Immler, S., Pitnick, S. & Birkhead, T. R. Sperm competition games: sperm size (mass) and number under raffle and displacement, and the evolution of P2. J. Theor. Biol. 264, 1003–1023 (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Parker, G. A. Sperm competition games: raffles and roles. Proc. Biol. Sci. / R. Soc. 242, 120–126 (1990).Article 
ADS 

Google Scholar 
Parker, G. A. & Begon, M. E. Sperm competition games: sperm size and number under gametic control. Proc. Biol. Sci. / R. Soc. 253, 255–262 (1993).Article 
ADS 
CAS 

Google Scholar 
Lüpold, S., de Boer, R. A., Evans, J. P., Tomkins, J. L. & Fitzpatrick, J. L. How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 375, 20200064 (2020).Article 

Google Scholar 
Snook, R. R. Sperm in competition: not playing by the numbers. Trends Ecol. Evol. 20, 46–53 (2005).Article 
PubMed 

Google Scholar 
Immler, S. et al. Resolving variation in the reproductive tradeoff between sperm size and number. Proc. Natl Acad. Sci. USA 108, 5325–5330 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lupold, S., Calhim, S., Immler, S. & Birkhead, T. R. Sperm morphology and sperm velocity in passerine birds. Proc. Biol. Sci. / R. Soc. 276, 1175–1181 (2009).Article 

Google Scholar 
Gomendio, M. & Roldan, E. R. Implications of diversity in sperm size and function for sperm competition and fertility. Int. J. Dev. Biol. 52, 439–447 (2008).Article 
PubMed 

Google Scholar 
Lupold, S. & Fitzpatrick, J. L. Sperm number trumps sperm size in mammalian ejaculate evolution. Proc. Biol. Sci. / R. Soc. 282, https://doi.org/10.1098/rspb.2015.2122 (2015).Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gomez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).Article 
PubMed 

Google Scholar 
White, E. P., Ernest, S. K., Kerkhoff, A. J. & Enquist, B. J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323–330 (2007).Article 
PubMed 

Google Scholar 
Szekely, P., Korem, Y., Moran, U., Mayo, A. & Alon, U. The mass-longevity triangle: Pareto optimality and the geometry of life-history trait space. PLoS Comput. Biol. 11, e1004524 (2016).Article 

Google Scholar 
Clutton-Brock, T. H., Harvey, P. H. & Rudder, B. Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature 269, 797–800 (1977).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Carranza, J. Sexual selection for male body mass and the evolution of litter size in mammals. Am. Nat. 148, 81–100 (1996).Article 

Google Scholar 
Lupold, S., Tomkins, J. L., Simmons, L. W. & Fitzpatrick, J. L. Female monopolization mediates the relationship between pre- and postcopulatory sexual traits. Nat. Commun. 5, 3184 (2015).Article 
ADS 

Google Scholar 
Jarvis, G. C. & Marshall, D. J. Fertilization mode covaries with body size. Am. Nat. 202, 448–457 (2023).Article 
PubMed 

Google Scholar 
Werner, J. & Griebeler, E. M. Reproductive biology and its impact on body size: comparative analysis of mammalian, avian and dinosaurian reproduction. PLoS ONE 6, e28442 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Liao, W. B. et al. Ejaculate evolution in external fertilizers: influenced by sperm competition or sperm limitation? Evolution 72, 4–17 (2018).Article 
CAS 
PubMed 

Google Scholar 
Stockley, P., Gage, M. J., Parker, G. A. & Moller, A. P. Female reproductive biology and the coevolution of ejaculate characteristics in fish. Proc. Biol. Sci. / R. Soc. 263, 451–458 (1996).Article 
ADS 

Google Scholar 
Emerson, S. B. Testis size variation in frogs: testing the alternatives. Behav. Ecol. Sociobiol. 41, 227–235 (1997).Article 

Google Scholar 
Byrne, P. G., Simmons, L. W. & Roberts, J. D. Sperm competition and the evolution of gamete morphology in frogs. Proc. Biol. Sci. / R. Soc. 270, 2079–2086 (2003).Article 

Google Scholar 
Furness, A. I., Venditti, C. & Capellini, I. Terrestrial reproduction and parental care drive rapid evolution in the trade-off between offspring size and number across amphibians. PLoS Biol. 20, e3001495 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Birkhead, T. & Moller, A. P. Numbers and size of sperm storage tubules and the duration of sperm storage in birds: a comparative study. Biol. J. Linn. Soc. 45, 363–372 (1992).Article 

Google Scholar 
Kleven, O. et al. Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution 63, 2466–2473 (2009).Article 
PubMed 

Google Scholar 
Briskie, J. V., Montgomerie, R. & Birkhead, T. The evolution of sperm size in birds. Evolution 51, 937–945 (1997).Article 
PubMed 

Google Scholar 
Meiri, S. et al. Different solutions lead to similar life history traits across the great divides of the amniote tree of life. J. Biol. Res. 28, 3 (2021).
Google Scholar 
Kozlowski, J., Konarzewski, M. & Czarnoleski, M. Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. Biol. Rev. Camb. Philos. Soc. 95, 1393–1417 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Makarieva, A. M. et al. Mean mass-specific metabolic rates are strikingly similar across life’s major domains: evidence for life’s metabolic optimum. Proc. Natl Acad. Sci. USA 105, 16994–16999 (2008).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gomendio, M., Tourmente, M. & Roldan, E. R. Why mammalian lineages respond differently to sexual selection: metabolic rate constrains the evolution of sperm size. Proc. Biol. Sci. / R. Soc. 278, 3135–3141 (2011).Article 

Google Scholar 
Tourmente, M. & Roldan, E. R. Mass-specific metabolic rate influences sperm performance through energy production in mammals. PLoS ONE 10, e0138185 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Tourmente, M., Gomendio, M. & Roldan, E. R. Mass-specific metabolic rate and sperm competition determine sperm size in marsupial mammals. PLoS ONE 6, e21244 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tang, Y., Mai, C. L., Yu, J. P. & Li, D. Y. Investigating the role of life-history traits in mammalian genomes. Anim. Biol. 70, 121–130 (2020).Article 

Google Scholar 
Turner, J. J., Ewald, J. C. & Skotheim, J. M. Cell size control in yeast. Curr. Biol. 22, R350–R359 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cavalier-Smith, T. Skeletal DNA and the evolution of genome size. Ann. Rev. Biophys. Bioeng. 11, 273–302 (1982).Article 
CAS 

Google Scholar 
Gregory, T. R. & Hebert, P. D. N. The modulation of DNA content: proximate causes and ultimate consequences. Genome Res. 9, 317–324 (1999).Article 
CAS 
PubMed 

Google Scholar 
Cavalier-Smith, T. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann. Bot. 95, 147–175 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Glazier, D. S. Genome size covaries more positively with propagule size than adult size: new insights into an old problem. Biology 10, https://doi.org/10.3390/biology10040270 (2021).Gage, M. J. G. Mammalian sperm morphometry. Proc. Biol. Sci. / R. Soc. 265, 97–103 (1998).Article 
CAS 

Google Scholar 
Gardner, J. D., Laurin, M. & Organ, C. L. The relationship between genome size and metabolic rate in extant vertebrates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 375, 20190146 (2020).Article 

Google Scholar 
Adler, M., Korem Kohanim, Y., Tendler, A., Mayo, A. & Alon, U. Continuum of gene-expression profiles provides spatial division of labor within a differentiated cell type. Cell Syst. 8, 43–52.e45 (2019).Article 
CAS 
PubMed 

Google Scholar 
Hart, Y. et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat. Methods 12, 233–235 (2015).Article 
CAS 
PubMed 

Google Scholar 
Hausser, J. et al. Tumor diversity and the trade-off between universal cancer tasks. Nat. Commun. 10, 5423 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Koçillari, L., Fariselli, P., Trovato, A., Seno, F. & Maritan, A. Signature of Pareto optimization in the Escherichia coli proteome. Sci. Rep. 8, 9141 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Shoval, O. et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160 (2012).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kavanagh, K. D. et al. Developmental bias in the evolution of phalanges. Proc. Natl Acad. Sci. USA 110, 18190–18195 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schuech, R., Hoehfurtner, T., Smith, D. J. & Humphries, S. Motile curved bacteria are Pareto-optimal. Proc. Natl Acad. Sci. USA 116, 14440–14447 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tendler, A., Mayo, A. & Alon, U. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells. BMC Syst. Biol. 9, 12 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Koçillari, L. et al. The Widened Pipe Model of plant hydraulic evolution. Proc. Natl Acad. Sci. USA 118, e2100314118 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Pallasdies, F., Norton, P., Schleimer, J. H. & Schreiber, S. Neural optimization: understanding trade-offs with Pareto theory. Curr. Opin. Neurobiol. 71, 84–91 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jedlicka, P., Bird, A. D. & Cuntz, H. Pareto optimality, economy-effectiveness trade-offs and ion channel degeneracy: improving population modelling for single neurons. Open Biol. 12, 220073 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Karolis, V. R., Corbetta, M. & Thiebaut de Schotten, M. The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nat. Commun. 10, 1417 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Cona, G. et al. Archetypes of human cognition defined by time preference for reward and their brain correlates: An evolutionary trade-off approach. Neuroimage 185, 322–334 (2019).Article 
PubMed 

Google Scholar 
Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall/CRC, 2019).Fitzpatrick, J. L., Kahrl, A. F. & Snook, R. R. SpermTree, a species-level database of sperm morphology spanning the animal tree of life. Sci. Data 9, 30 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Mørup, M. & Hansen, L. K. Archetypal analysis for machine learning and data mining. Neurocomputing 80, 54–63 (2012).Article 

Google Scholar 
Bioucas-Dias, J. M. A variable splitting augmented Lagrangian approach to linear spectral unmixing. 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 1–4 https://doi.org/10.1109/WHISPERS.2009.5289072 (2009).Stockley, P., Gage, M. J. G., Parker, G. A. & Moller, A. P. Sperm competition in fishes: the evolution of testis size and ejaculate characteristics. Am. Nat. 149, 933–954 (1997).Article 
CAS 
PubMed 

Google Scholar 
Adler, M. et al. Controls for phylogeny and robust analysis in Pareto task inference. Mol. Biol. Evol. 39, https://doi.org/10.1093/molbev/msab297 (2021).Gomendio, M. & Roldan, E. R. Sperm competition influences sperm size in mammals. Proc. Biol. Sci. / R. Soc. 243, 181–185, (1991).Article 
ADS 
CAS 

Google Scholar 
Bennett, M. D. The duration of meiosis. Proc. Biol. Sci./ R. Soc. 178, 277–299 (1971).ADS 
CAS 

Google Scholar 
Friedländer, M., Seth, R. K. & Reynolds, S. E. Eupyrene and Apyrene Sperm: Dichotomous Spermatogenesis in Lepidoptera. Adv. Insect Physiol. 32, 206–308 (2005).Walmsley, S. F. & Morrissey, M. B. Causation, not collinearity: identifying sources of bias when modelling the evolution of brain size and other allometric traits. Evol. Lett. 6, 234–244 (2022).Article 
PubMed 

Google Scholar 
Baker, J., Humphries, S., Ferguson-Gow, H., Meade, A. & Venditti, C. Rapid decreases in relative testes mass among monogamous birds but not in other vertebrates. Ecol. Lett. 23, 283–292 (2020).Article 
PubMed 

Google Scholar 
Gregory, T. R. Animal Genome Size Database. http://www.genomesize.com (2005).Etard, A. et al. Global gaps in trait data for terrestrial vertebrates. Glob. Ecol. Biogeogr. 29, 2143–2158 (2020).Article 

Google Scholar 
Oliveira, B. F., Sao-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
de Magalhaes, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evolut. Biol. 22, 1770–1774 (2009).Article 

Google Scholar 
Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Michonneau, F., Brown, J. W., Winter, D. J. & Fitzjohn, R. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

Google Scholar 
Eastman, J. M. et al. Congruification: support for time scaling large phylogenetic trees. Methods Ecol. Evol. 4, 688–691 (2013).Article 

Google Scholar 
Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).Article 
PubMed 

Google Scholar 
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).Article 
CAS 
PubMed 

Google Scholar 
Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
CAS 
PubMed 

Google Scholar 
Koçillari, L. et al. Tetrapod sperm length evolution in relation to body mass is shaped by multiple trade-offs. https://doi.org/10.5281/zenodo.11621774 (2024).

Hot Topics

Related Articles