Metal-organic framework single crystal for in-memory neuromorphic computing with a light control

Schuman, C. D. et al. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).Article 
PubMed 

Google Scholar 
Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003).Article 
CAS 
PubMed 

Google Scholar 
Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).Article 

Google Scholar 
Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).Article 
CAS 
PubMed 

Google Scholar 
Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ning, H. et al. An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18, 493–500 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Woźniak, S., Pantazi, A., Bohnstingl, T. & Eleftheriou, E. Deep learning incorporating biologically inspired neural dynamics and in-memory computing. Nat. Mach. Intel. 2, 325–336 (2020).Article 

Google Scholar 
Shi, Y. et al. Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks. Nat. Commun. 13, 6048 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).Article 
CAS 

Google Scholar 
Chembo, Y. K. Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems. Chaos 30, 013111 (2020).Article 
PubMed 

Google Scholar 
van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).Article 
PubMed 

Google Scholar 
Leydecker, T. et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020).Article 
CAS 
PubMed 

Google Scholar 
Fu, X. et al. Graphene/MoS2-xOx/graphene photomemristor with tunable non-volatile responsivities for neuromorphic vision processing. Light Sci. Appl. 12, 39 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sarwat, S. G., Moraitis, T., Wright, C. D. & Bhaskaran, H. Chalcogenide optomemristors for multi-factor neuromorphic computation. Nat. Commun. 13, 2247 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, D. et al. Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex. Electron. 5, 13 (2021).Article 
CAS 

Google Scholar 
van de Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).Article 

Google Scholar 
Huh, W., Lee, D. & Lee, C.-H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 32, 2002092 (2020).Article 
CAS 

Google Scholar 
Kelleher, B., Dillane, M. & Viktorov, E. A. Optical information processing using dual state quantum dot lasers: complexity through simplicity. Light Sci. Appl. 10, 238 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Y. et al. Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 6, 870–878 (2023).Article 

Google Scholar 
Chen, X. et al. Light driven active transition of switching modes in homogeneous oxides/graphene heterostructure. Adv. Sci. 6, 1900213 (2019).Article 

Google Scholar 
Wang, L. et al. Review of applications of 2D materials in memristive neuromorphic circuits. J. Mater. Sci. 57, 4915–4940 (2022).Article 
CAS 

Google Scholar 
Yin, L., Cheng, R., Wen, Y., Liu, C. & He, J. Emerging 2D memory devices for in-memory computing. Adv. Mater. 33, 2007081 (2021).Article 
CAS 

Google Scholar 
Vats, G., Hodges, B., Ferguson, A. J., Wheeler, L. M. & Blackburn, J. L. Optical memory, switching, and neuromorphic functionality in metal halide perovskite materials and devices. Adv. Mater. 35, 2205459 (2023).Article 
CAS 

Google Scholar 
Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).Article 
PubMed 

Google Scholar 
Xiang, H. et al. Green flexible electronics based on starch. npj Flex. Electron. 6, 15 (2022).Article 

Google Scholar 
Chiong, J. A., Tran, H., Lin, Y., Zheng, Y. & Bao, Z. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv. Sci. 8, 2101233 (2021).Article 
CAS 

Google Scholar 
Mezenov, Y. A., Krasilin, A. A., Dzyuba, V. P., Nominé, A. & Milichko, V. A. Metal–organic frameworks in modern physics: highlights and perspectives. Adv. Sci. 6, 1900506 (2019).Article 

Google Scholar 
Katsoulidis, A. P. et al. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature 565, 213–217 (2019).Article 
CAS 
PubMed 

Google Scholar 
Meng, W. et al. An elastic metal–organic crystal with a densely catenated backbone. Nature 598, 298–303 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, F. et al. High-sensitivity shortwave infrared photodetectors of metal-organic frameworks integrated on 2D layered materials. Sci. China Mater. 65, 451–459 (2022).Article 
CAS 

Google Scholar 
Liu, X. et al. Photoconductivity in metal–organic framework (MOF) thin films. Angew. Chem. Int. Ed. 58, 9590–9595 (2019).Article 
CAS 

Google Scholar 
Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat. Mater. 17, 1027–1032 (2018).Article 
CAS 
PubMed 

Google Scholar 
Claire, F. J. et al. Structural and electronic switching of a single crystal 2D metal-organic framework prepared by chemical vapor deposition. Nat. Commun. 11, 5524 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. et al. Bidirectional light-driven ion transport through porphyrin metal–organic framework-based van der waals heterostructures via pH-induced band alignment inversion. CCS Chem. 4, 3329–3341 (2022).Article 
CAS 

Google Scholar 
Arora, H. et al. Demonstration of a broadband photodetector based on a two-dimensional metal–organic framework. Adv. Mater. 32, 1907063 (2020).Article 
CAS 

Google Scholar 
Liu, C.-K. et al. 2D metal–organic framework Cu3(HHTT)2 films for broadband photodetectors from ultraviolet to mid-infrared. Adv. Mater. 34, 2204140 (2022).Article 
CAS 

Google Scholar 
Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358, 347–351 (2017).Article 
CAS 
PubMed 

Google Scholar 
Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).Article 
CAS 
PubMed 

Google Scholar 
Cai, W. et al. Metal–organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 6, 1801526 (2019).Article 

Google Scholar 
Bigdeli, F., Lollar, C. T., Morsali, A. & Zhou, H.-C. Switching in metal–organic frameworks. Angew. Chem. Int. Ed. 59, 4652–4669 (2020).Article 
CAS 

Google Scholar 
Mustaqeem, M. et al. Chiral metal-organic framework based spin-polarized flexible photodetector with ultrahigh sensitivity. Mater. Today Nano 21, 100303 (2023).Article 
CAS 

Google Scholar 
Gao, S. et al. Self-powered infrared photodetectors with ultra-high speed and detectivity based on amorphous Cu-based MOF films. ACS Appl. Mater. Interfaces 15, 32637–32646 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kenzhebayeva, Y. A. et al. Light-driven anisotropy of 2D metal-organic framework single crystal for repeatable optical modulation. Commun. Mater. 5, 48 (2024).Article 
CAS 

Google Scholar 
Kulachenkov, N. et al. MOF-based sustainable memory devices. Adv. Funct. Mater. 32, 2107949 (2022).Article 
CAS 

Google Scholar 
Yao, Z. et al. Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Sci. Adv. 5, eaaw4515 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yoon, S. M., Warren, S. C. & Grzybowski, B. A. Storage of electrical information in metal–organic-framework memristors. Angew. Chem. Int. Ed. 53, 4437–4441 (2014).Article 
CAS 

Google Scholar 
Kulachenkov, N. et al. Dimensionality mediated highly repeatable and fast transformation of coordination polymer single crystals for all-optical data processing. Nano Lett. 22, 6972–6981 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zheng, H.-Q. et al. Photo-stimuli-responsive dual-emitting luminescence of a spiropyran-encapsulating metal–organic framework for dynamic information encryption. Adv. Mater. 35, 2300177 (2023).Article 
CAS 

Google Scholar 
Milichko, V. A. et al. van der Waals metal-organic framework as an excitonic material for advanced photonics. Adv. Mater. 29, 1606034 (2017).Article 

Google Scholar 
Liu, D. et al. 2D metal–organic framework based optoelectronic neuromorphic transistors for human emotion simulation and neuromorphic computing. Adv. Int. Syst. 4, 2200164 (2022).Article 

Google Scholar 
Xie, D. et al. Porous metal–organic framework/ReS2 heterojunction phototransistor for polarization-sensitive visual adaptation emulation. Adv. Mater. 35, 2212118 (2023).Article 
CAS 

Google Scholar 
Robinson, D. A. et al. Tunable intervalence charge transfer in ruthenium prussian blue analog enables stable and efficient biocompatible artificial synapses. Adv. Mater. 35, 2207595 (2023).Article 
CAS 

Google Scholar 
Ding, G., Han, S.-T., Kuo, C.-C., Roy, V. A. L. & Zhou, Y. Porphyrin-based metal–organic frameworks for neuromorphic electronics. Small Struct. 4, 2200150 (2023).Article 
CAS 

Google Scholar 
Ding, G. et al. Porous crystalline materials for memories and neuromorphic computing systems. Chem. Soc. Rev. 52, 7071–7136 (2023).Article 
CAS 
PubMed 

Google Scholar 
Oh, J. & Yoon, S. M. Resistive memory devices based on reticular materials for electrical information storage. ACS Appl. Mater. Interfaces 13, 56777–56792 (2021).Article 
CAS 
PubMed 

Google Scholar 
Xu, Z. et al. Organic frameworks memristor: an emerging candidate for data storage, artificial synapse, and neuromorphic device. Adv. Funct. Mater. 34, 2312658 (2024).Article 
CAS 

Google Scholar 
Zhou, K. et al. Covalent organic frameworks for neuromorphic devices. J. Phys. Chem. Lett. 14, 7173–7192 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1150 (1999).Article 
CAS 
PubMed 

Google Scholar 
Kulachenkov, N. K. et al. Photochromic free MOF-based near-infrared optical switch. Angew. Chem. Int. Ed. 59, 15522–15526 (2020).Article 
CAS 

Google Scholar 
Yang, J.-Q. et al. Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32, 2003610 (2020).Article 

Google Scholar 
Liu, L. et al. High-quality two-dimensional metal-organic framework nanofilms for nonvolatile memristive switching. Small Struct. 2, 2000077 (2021).Article 
CAS 

Google Scholar 
Wang, S. et al. A unique photoswitch: intrinsic photothermal heating induced reversible proton conductivity of a HKUST-1 membrane. Dalton Trans. 50, 2731–2735 (2021).Article 
CAS 
PubMed 

Google Scholar 
Pan, L. et al. Metal-organic framework nanofilm for mechanically flexible information storage applications. Adv. Funct. Mater. 25, 2677–2685 (2015).Article 
CAS 

Google Scholar 
Albano, L. G. S. et al. Ambipolar resistive switching in an ultrathin surface-supported metal–organic framework vertical heterojunction. Nano Lett. 20, 1080–1088 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Resistive switching nanodevices based on metal–organic frameworks. ChemNanoMat 2, 67–73 (2016).Article 
CAS 

Google Scholar 
Kenzhebayeva, Y. et al. Light-induced color switching of single metal–organic framework nanocrystals. J. Phys. Chem. Lett. 13, 777–783 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ma, Z.-Z., Li, Q.-H., Wang, Z., Gu, Z.-G. & Zhang, J. Electrically regulating nonlinear optical limiting of metal-organic framework film. Nat. Commun. 13, 6347 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Irandoost, E., Farsi, H. & Farrokhi, A. Effects of water content on electrochemical capacitive behavior of nanostructured Cu3(BTC)2 MOF prepared in aqueous solution. Electrochim. Acta 368, 137616 (2021).Article 
CAS 

Google Scholar 
Xiang, W., Zhang, Y., Chen, Y., Liu, C.-J. & Tu, X. Synthesis, characterization and application of defective metal–organic frameworks: current status and perspectives. J. Mater. Chem. A 8, 21526–21546 (2020).Article 
CAS 

Google Scholar 
Cheetham, A. K., Bennett, T. D., Coudert, F.-X. & Goodwin, A. L. Defects and disorder in metal organic frameworks. Dalton Trans. 45, 4113–4126 (2016).Article 
CAS 
PubMed 

Google Scholar 
Rasch, M. J. et al. A Flexible and Fast PyTorch Toolkit for simulating training and inference on analog crossbar arrays. IEEE 3rd Int. Conf. Artificial Intelligence Circuits and Systems (AICAS) 1–4 (2021).Gong, N. et al. Signal and noise extraction from analog memory elements for neuromorphic computing. Nat. Commun. 9, 2102 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deng, L. The MNIST database of handwritten digit images for machine learning research [Best of the Web]. IEEE Signal Proc. Mag. 29, 141–142 (2012).Article 

Google Scholar 

Hot Topics

Related Articles