Facile access to bicyclo[2.1.1]hexanes by Lewis acid-catalyzed formal cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes

Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).Article 
CAS 
PubMed 

Google Scholar 
Lovering, F. Escape from Flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).Article 
CAS 

Google Scholar 
Bauer, M. R. et al. Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Med. Chem. 12, 448–471 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019).Article 
CAS 
PubMed 

Google Scholar 
Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).Article 
CAS 
PubMed 

Google Scholar 
Denisenko, A., Garbuz, P., Shishkina, S. V., Voloshchuk, N. M. & Mykhailiuk, P. K. Saturated bioisosteres of ortho-substituted benzenes. Angew. Chem. Int. Ed. 59, 20515–20521 (2020).Article 
CAS 

Google Scholar 
Denisenko, A., Garbuz, P., Makovetska, Y., Shablykin, O. & Mykhailiuk, P. K. 1,2-Disubstituted bicyclo[2.1.1]hexanes as saturated bioisosteres of ortho-substituted benzene. Chem. Sci. 14, 14092–14099 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kleinnijenhuis, R. A. et al. Formal synthesis of solanoeclepin A: enantioselective allene diboration and intramolecular [2 + 2] photocycloaddition for the construction of the tricyclic core. Chem. Eur. J. 22, 1266–1269 (2016).Article 
CAS 
PubMed 

Google Scholar 
Takao, K.-i et al. Total syntheses of (+)-aquatolide and related humulanolides. Angew. Chem., Int. Ed. 58, 9851–9855 (2019).Article 
CAS 

Google Scholar 
Rigotti, T. & Bach, T. Bicyclo[2.1.1]hexanes by visible light-driven intramolecular crossed [2 + 2] photocycloadditions. Org. Lett. 24, 8821–8825 (2022).Article 
CAS 
PubMed 

Google Scholar 
Herter, L., Koutsopetras, I., Turelli, L., Fessard, T. & Salomé, C. Preparation of new bicyclo[2.1.1]hexane compact modules: an opening towards novel sp3-rich chemical space. Org. Biomol. Chem. 20, 9108–9111 (2022).Article 
CAS 
PubMed 

Google Scholar 
Paul, S., Adelfinsky, D., Salome, C., Fessard, T. & Brown, M. K. 2,5-Disubstituted bicyclo[2.1.1]hexanes as rigidified cyclopentane variants. Chem. Sci. 14, 8070–8075 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Reinhold, M., Steinebach, J., Golz, C. & Walker, J. C. L. Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space. Chem. Sci. 14, 9885–9891 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Posz, J. M. et al. Synthesis of borylated carbocycles by [2 + 2]-cycloadditions and photo-ene reactions. J. Am. Chem. Soc. 146, 10142–10149 (2024).Article 
CAS 
PubMed 

Google Scholar 
Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cairncross, A. & Blanchard, E. P. Jr. Bicyclo[1.1.0]butane chemistry. II. cycloaddition reactions of 3-methylbicyclo[1.1.0]butanecarbonitriles. The formation of bicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 88, 496–504 (1966).Article 
CAS 

Google Scholar 
De Meijere, A. et al. Cycloadditions of methylenecyclopropanes and strained bicyclo[n.1.0]alkanes to radicophilic olefins. Tetrahedron 42, 1291–1297 (1986).Article 

Google Scholar 
Wipf, P. & Walczak, M. A. A. Pericyclic cascade reactions of (bicyclo[1.1.0]-butylmethyl)amines. Angew. Chem., Int. Ed. 45, 4172–4175 (2006).Article 
CAS 

Google Scholar 
Kleinmans, R. et al. Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer. Nature. 605, 477–482 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Guo, R. et al. Strain-release [2π+2σ] cycloadditions for the synthesis of bicyclo[2.1.1]hexanes initiated by energy transfer. J. Am. Chem. Soc. 144, 7988–7994 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kleinmans, R. et al. ortho-Selective dearomative [2π + 2σ] photocycloadditions of bicyclic aza-arenes. J. Am. Chem. Soc. 145, 12324–12332 (2023).Article 
CAS 
PubMed 

Google Scholar 
de Robichon, M. et al. Enantioselective, intermolecular [π2+σ2] photocycloaddition reactions of 2(1H)-quinolones and bicyclo[1.1.0]butanes. J. Am. Chem. Soc. 145, 24466–24470 (2023).
Google Scholar 
Fu, Q. et al. Enantioselective [2π + 2σ] cycloadditions of bicyclo[1.1.0]butanes with vinylazaarenes through asymmetric photoredox catalysis. J. Am. Chem. Soc. 146, 8372–8380 (2024).Article 
CAS 
PubMed 

Google Scholar 
Xu, M. et al. Diboron(4)‐catalyzed remote [3+2] cycloaddition of cyclopropanes via dearomative/rearomative radical transmission through pyridine. Angew. Chem., Int. Ed. 61, e202214507 (2022).Article 
CAS 

Google Scholar 
Agasti, S. et al. Catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres. Nat. Chem 15, 535–541 (2023).Article 
CAS 
PubMed 

Google Scholar 
Liu, Y. et al. Pyridine-boryl radical-catalyzed [2π + 2σ] cycloaddition of bicyclo[1.1.0]butanes with alkenes. ACS Catal. 13, 5096–5103 (2023).Article 
CAS 

Google Scholar 
Ren, H. et al. Ti-catalyzed formal [2π + 2σ] cycloadditions of bicyclo[1.1.0]butanes with 2-azadienes to access aminobicyclo[2.1.1]hexanes. Org. Lett. 26, 1745–1750 (2024).Article 
CAS 
PubMed 

Google Scholar 
Dutta, S. et al. Photoredox-enabled dearomative [2π + 2σ] cycloaddition of phenols. J. Am. Chem. Soc. 2024, 2789–2797 (2024).Article 

Google Scholar 
Tyler, J. L. et al. Bicyclo[1.1.0]butyl radical cations: synthesis and application to [2π + 2σ] cycloaddition reactions. J. Am. Chem. Soc 146, 16237–16247 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dhake, K. et al. Beyond bioisosteres: divergent synthesis of azabicyclohexanes and cyclobutenyl amines from bicyclobutanes. Angew. Chem. Int. Ed. 61, e202204719 (2022).Article 
ADS 
CAS 

Google Scholar 
Radhoff, N., Daniliuc, C. G. & Studer, A. Lewis acid catalyzed formal (3+2)-cycloaddition of bicyclo[1.1.0]butanes with ketenes. Angew. Chem. Int. Ed. 62, e202304771 (2023).Article 
CAS 

Google Scholar 
Liang, Y., Paulus, F., Daniliuc, C. G. & Glorius, F. Catalytic formal [2π+2σ] cycloaddition of aldehydes with bicyclobutanes: expedient access to polysubstituted 2-oxabicyclo[2.1.1]hexanes. Angew. Chem. Int. Ed. 62, e202305043 (2023).Article 
CAS 

Google Scholar 
Schwartz, B. D., Zhang, M. Y., Attard, R. H., Gardiner, M. G. & Malins, L. R. Structurally diverse acyl bicyclobutanes: valuable strained electrophiles. Chem. Eur. J. 26, 2808–2812 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ni, D. et al. Intermolecular formal cycloaddition of indoles with bicyclo[1.1.0]butanes by Lewis acid catalysis. Angew. Chem. Int. Ed. 62, e202308606 (2023).Article 
CAS 

Google Scholar 
Tang, L. et al. Silver-catalyzed dearomative [2π+2σ] cycloadditions of indoles with bicyclobutanes: access to indoline fused bicyclo[2.1.1]hexanes. Angew. Chem. Int. Ed. 62, e202310066 (2023).Article 
CAS 

Google Scholar 
Wang, J.-J. et al. Switching between the [2π+2σ] and hetero-[4π+2σ] cycloaddition reactivity of bicyclobutanes with Lewis acid catalysts enables the synthesis of spirocycles and bridged heterocycles. Angew. Chem. Int. Ed. 63, e202405222 (2024).Article 
CAS 

Google Scholar 
Woelk, K. J., Dhake, K., Schley, N. D. & Leitch, D. C. Enolate addition to bicyclobutanes enables expedient access to 2-oxo-bicyclohexane scaffolds. Chem. Commun. 59, 13847–13850 (2023).Article 
CAS 

Google Scholar 
Zhang, J., Su, J.-Y., Zheng, H., Li, H. & Deng, W.-P. Eu(OTf)3‐catalyzed formal dipolar [4π + 2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones: access to polysubstituted 2‐oxa‐3‐azabicyclo[3.1.1]heptanes. Angew. Chem. Int. Ed. 63, e202318476 (2024).Article 
CAS 

Google Scholar 
Liang, Y., Nematswerani, R., Daniliuc, C. G. & Glorius, F. Silver-enabled cycloaddition of bicyclobutanes with isocyanides for the synthesis of polysubstituted 3-azabicyclo[3.1.1]heptanes. Angew. Chem. Int. Ed. 63, e202402730 (2024).Article 
CAS 

Google Scholar 
Yamaoka, Y. & Takasu, K. Catalytic [2+2] cycloaddition of silyl enol ethers. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses (eds Nishiwaki, N.) 115–134 (Wiley, 2014).Takasu, K. Synthesis of multisubstituted silyloxy-based donor-acceptor cyclobutanes by an acid-catalyzed [2+2] cycloaddition. Isr. J. Chem. 56, 488–498 (2016).Article 
CAS 

Google Scholar 
Bach, T., Jödicke, K., Kather, K. & Fröhlich, R. 1,3-Allylic strain as a control element in the Paternò−Büchi reaction of chiral silyl enol ethers:  synthesis of diastereomerically pure oxetanes containing four contiguous stereogenic centers. J. Am. Chem. Soc. 119, 2437–2445 (1997).Article 
CAS 

Google Scholar 
Kang, T. et al. A chiral N,N’-dioxide-Zn(II) complex catalyzes the enantioselective [2+2] cycloaddition of alkynones with cyclic enol silyl ethers. Angew. Chem. Int. Ed. 55, 5541–5544 (2016).Article 
CAS 

Google Scholar 
Fuchibe, K., Aono, T., Hu, J. & Ichikawa, J. Copper(I)-catalyzed [4 + 1] cycloaddition of silyl dienol ethers with sodium bromodifluoroacetate: access to β,β-difluorocyclopentanone derivatives. Org. Lett. 18, 4502–4505 (2016).Article 
CAS 
PubMed 

Google Scholar 
Takasu, K., Nagao, S. & Ihara, M. Construction of highly‐functionalized cyclopentanes from silyl enol ethers and activated cyclopropanes by [3+2] cycloaddition catalyzed by triflic imide. Adv. Synth. Catal. 348, 2376–2380 (2006).Article 
CAS 

Google Scholar 
de Nanteuil, F. & Waser, J. Catalytic [3+2] annulation of aminocyclopropanes for the enantiospecific synthesis of cyclopentylamines. Angew. Chem. Int. Ed. 50, 12075–12079 (2011).Article 

Google Scholar 
Xu, H., Qu, J. P., Liao, S., Xiong, H. & Tang, Y. Highly enantioselective [3+2] annulation of cyclic enol silyl ethers with donor-acceptor cyclopropanes: accessing 3a-hydroxy [n.3.0]carbobicycles. Angew. Chem. Int. Ed. 52, 4004–4007 (2013).Article 
CAS 

Google Scholar 
Xu, H., Hu, J. L., Wang, L., Liao, S. & Tang, Y. Asymmetric annulation of donor-acceptor cyclopropanes with dienes. J. Am. Chem. Soc. 137, 8006–8009 (2015).Article 
CAS 
PubMed 

Google Scholar 
Nicolai, S. & Waser, J. Lewis Acid Catalyzed [4+2] Annulation of Bicyclobutanes with Dienol Ethers for the Synthesis of Bicyclo[4.1.1]octanes. Chem. Sci. https://doi.org/10.1039/D4SC02767A (2024).Semeno, V. V. et al. Bicyclo[m.n.k]alkane building blocks as promising benzene and cycloalkane isosteres: multigram synthesis, physicochemical and structural characterization. Chem. Eur. J. 30, e202303859 (2024).Article 
CAS 
PubMed 

Google Scholar 
Pronin, S. V., Reiher, C. A. & Shenvi, R. A. Stereoinversion of tertiary alcohols to tertiary-alkyl isonitriles and amines. Nature 501, 195–199 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Singleton, D. A. & Thomas, A. A. High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance. J. Am. Chem. Soc. 117, 9357–9358 (1995).Article 
CAS 

Google Scholar 
Kwon, K.-H., Lee, D. W. & Yi, C. S. Chelate-assisted oxidative coupling reaction of arylamides and unactivated alkenes: mechanistic evidence for vinyl C−H bond activation promoted by an electrophilic ruthenium hydride catalyst. Organometallics 29, 5748–5750 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bartelson, K. J., Singh, R. P., Foxman, B. M. & Deng, L. Catalytic asymmetric [4 + 2] additions with aliphatic nitroalkenes. Chem. Sci. 2, 1940–1944 (2011).Article 
CAS 
PubMed 

Google Scholar 
This manuscript was submitted on ChemRxiv. Hu, S., Pan, Y., Ni, D. & Deng, L. Facile access to bicyclo[2.1.1]hexanes by formal cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes with Lewis acids. Preprint at https://doi.org/10.26434/chemrxiv-2024-486kr (2024).

Hot Topics

Related Articles