Visible light-induced chemoselective 1,2-diheteroarylation of alkenes

Yoon, T. P., Ischay, M. A. & Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2, 527–532 (2010).Article 
CAS 
PubMed 

Google Scholar 
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).Article 
CAS 

Google Scholar 
Marzo, L., Pagire, S. K., Reiser, O. & Koenig, B. Visible-light photocatalysis: Does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).Article 
CAS 

Google Scholar 
Chen, Y., Lu, L.-Q., Yu, D.-G., Zhu, C.-J. & Xiao, W.-J. Visible light-driven organic photochemical synthesis in china. Sci. China Chem. 62, 24–57 (2019).Article 
CAS 

Google Scholar 
Sakakibara, Y. & Murakami, K. Switchable divergent synthesis using photocatalysis. ACS Catal. 12, 1857–1878 (2022).Article 
CAS 

Google Scholar 
Lee, W., Park, I. & Hong, S. Photoinduced difunctionalization with bifunctional reagents containing N-heteroaryl moieties. Sci. China Chem. 66, 1688–1700 (2023).Article 
CAS 

Google Scholar 
Matsuo, B., Granados, A., Levitre, G. & Molander, G. A. Photochemical methods applied to DNA encoded library synthesis. Acc. Chem. Res. 56, 385–401 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wortman, A. K. & Stephenson, C. R. J. EDA photochemistry: Mechanistic investigations and future opportunities. Chem 9, 2390–2415 (2023).Article 
CAS 
PubMed 

Google Scholar 
Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).Article 
CAS 
PubMed 

Google Scholar 
Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).Article 
CAS 
PubMed 

Google Scholar 
Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Crisenza, G. E. M. & Melchiorre, P. Chemistry glows green with photoredox catalysis. Nat. Commun. 11, 803 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, C., Yue, H., Chu, L. & Rueping, M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: Pushing the boundaries of complexity. Chem. Sci. 11, 4051–4064 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chan, A. Y. et al. Metallaphotoredox: The merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).Article 
CAS 
PubMed 

Google Scholar 
Engl, S. & Reiser, O. Copper-photocatalyzed ATRA reactions: Concepts, applications, and opportunities. Chem. Soc. Rev. 51, 5287–5299 (2022).Article 
CAS 
PubMed 

Google Scholar 
Michelin, C. & Hoffmann, N. Photosensitization and photocatalysis—perspectives in organic synthesis. ACS Catal. 8, 12046–12055 (2018).Article 
CAS 

Google Scholar 
Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: Principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Q.-Q., Zou, Y.-Q., Lu, L.-Q. & Xiao, W.-J. Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angew. Chem. Int. Ed. 58, 1586–1604 (2019).Article 
CAS 

Google Scholar 
Strieth-Kalthoff, F. & Glorius, F. Triplet energy transfer photocatalysis: Unlocking the next level. Chem 6, 1888–1903 (2020).Article 
CAS 

Google Scholar 
Großkopf, J., Kratz, T., Rigotti, T. & Bach, T. Enantioselective photochemical reactions enabled by triplet energy transfer. Chem. Rev. 122, 1626–1653 (2022).Article 
PubMed 

Google Scholar 
Neveselý, T., Wienhold, M., Molloy, J. J. & Gilmour, R. Advances in the E→Z isomerization of alkenes using small molecule photocatalysts. Chem. Rev. 122, 2650–2694 (2022).Article 
PubMed 

Google Scholar 
Lee, W., Koo, Y., Jung, H., Chang, S. & Hong, S. Energy-transfer-induced [3+2] cycloadditions of N–N pyridinium ylides. Nat. Chem. 15, 1091–1099 (2023).Article 
CAS 
PubMed 

Google Scholar 
Aycock, R. A., Vogt, D. B. & Jui, N. T. A practical and scalable system for heteroaryl amino acid synthesis. Chem. Sci. 8, 7998–8003 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boyington, A. J., Riu, M.-L. Y. & Jui, N. T. Anti-Markovnikov hydroarylation of unactivated olefins via pyridyl radical intermediates. J. Am. Chem. Soc. 139, 6582–6585 (2017).Article 
CAS 
PubMed 

Google Scholar 
Seath, C. P., Vogt, D. B., Xu, Z., Boyington, A. J. & Jui, N. T. Radical hydroarylation of functionalized olefins and mechanistic investigation of photocatalytic pyridyl radical reactions. J. Am. Chem. Soc. 140, 15525–15534 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, S.-Y. et al. Photo-induced catalytic halopyridylation of alkenes. Nat. Commun. 12, 6538 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ma, J. et al. Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes. Science 371, 1338–1345 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, R. et al. Photochemical dearomative cycloadditions of quinolines and alkenes: Scope and mechanism studies. J. Am. Chem. Soc. 144, 17680–17691 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ma, J. et al. Facile access to fused 2D/3D rings via intermolecular cascade dearomative [2 + 2] cycloaddition/rearrangement reactions of quinolines with alkenes. Nat. Catal. 5, 405–413 (2022).Article 
CAS 

Google Scholar 
Buu-Hoi, N., Delcey, M., Jacquignon, P. & P’erin, F. Further heterocyclic analogs of polyaryls. J. Heterocycl. Chem. 5, 259–262 (1968).Article 
CAS 

Google Scholar 
Chen, L., Hernandez, Y., Feng, X. & Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012).Article 
CAS 

Google Scholar 
Hennessy, E. T. & Betley, T. A. Complex N-heterocycle synthesis via iron-catalyzed, direct C–H bond amination. Science 340, 591–595 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Miao, Q. Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications. (John Wiley & Sons, 2015).Stępień, M., Gońka, E., Żyła, M. & Sprutta, N. Heterocyclic nanographenes and other polycyclic heteroaromatic compounds: Synthetic routes, properties, and applications. Chem. Rev. 117, 3479–3716 (2017).Article 
PubMed 

Google Scholar 
Grzybowski, M., Sadowski, B., Butenschön, H. & Gryko, D. T. Synthetic applications of oxidative aromatic coupling—from biphenols to nanographenes. Angew. Chem. Int. Ed. 59, 2998–3027 (2020).Article 
CAS 

Google Scholar 
Choi, J., Laudadio, G., Godineau, E. & Baran, P. S. Practical and regioselective synthesis of C-4-alkylated pyridines. J. Am. Chem. Soc. 143, 11927–11933 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xiong, W. et al. Dynamic kinetic reductive conjugate addition for construction of axial chirality enabled by synergistic photoredox/cobalt catalysis. J. Am. Chem. Soc. 145, 7983–7991 (2023).Article 
CAS 
PubMed 

Google Scholar 
Urkalan, K. B. & Sigman, M. S. Palladium-catalyzed oxidative intermolecular difunctionalization of terminal alkenes with organostannanes and molecular oxygen. Angew. Chem. Int. Ed. 48, 3146–3149 (2009).Article 
CAS 

Google Scholar 
Shrestha, B. et al. Ni-catalyzed regioselective 1,2-dicarbofunctionalization of olefins by intercepting heck intermediates as imine-stabilized transient metallacycles. J. Am. Chem. Soc. 139, 10653–10656 (2017).Article 
CAS 
PubMed 

Google Scholar 
Derosa, J. et al. Nickel-catalyzed 1,2-diarylation of simple alkenyl amides. J. Am. Chem. Soc. 140, 17878–17883 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gao, P., Chen, L. A. & Brown, M. K. Nickel-catalyzed stereoselective diarylation of alkenylarenes. J. Am. Chem. Soc. 140, 10653–10657 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Anthony, D., Lin, Q., Baudet, J. & Diao, T. Nickel-catalyzed asymmetric reductive diarylation of vinylarenes. Angew. Chem. Int. Ed. 58, 3198–3202 (2019).Article 
CAS 

Google Scholar 
Ping, Y., Li, Y., Zhu, J. & Kong, W. Construction of quaternary stereocenters by palladium-catalyzed carbopalladation-initiated cascade reactions. Angew. Chem. Int. Ed. 58, 1562–1573 (2019).Article 
CAS 

Google Scholar 
Chintawar, C. C., Yadav, A. K. & Patil, N. T. Gold-catalyzed 1,2-diarylation of alkenes. Angew. Chem. Int. Ed. 59, 11808–11813 (2020).Article 
CAS 

Google Scholar 
Derosa, J. et al. Nickel-catalyzed 1,2-diarylation of alkenyl carboxylates: A gateway to 1,2,3-trifunctionalized building blocks. Angew. Chem. Int. Ed. 59, 1201–1205 (2020).Article 
CAS 

Google Scholar 
Wang, H., Liu, C.-F., Martin, R. T., Gutierrez, O. & Koh, M. J. Directing-group-free catalytic dicarbofunctionalization of unactivated alkenes. Nat. Chem. 14, 188–195 (2022).Article 
PubMed 

Google Scholar 
Qin, J.-H., Luo, M.-J., An, D.-L. & Li, J.-H. Electrochemical 1,2-diarylation of alkenes enabled by direct dual C–H functionalizations of electron-rich aromatic hydrocarbons. Angew. Chem. Int. Ed. 60, 1861–1868 (2021).Article 
CAS 

Google Scholar 
Plesniak, M. P., Huang, H.-M. & Procter, D. J. Radical cascade reactions triggered by single electron transfer. Nat. Rev. Chem. 1, 0077 (2017).Article 

Google Scholar 
Xuan, J. & Studer, A. Radical cascade cyclization of 1,n-enynes and diynes for the synthesis of carbocycles and heterocycles. Chem. Soc. Rev. 46, 4329–4346 (2017).Article 
CAS 
PubMed 

Google Scholar 
Huang, H.-M., Garduño-Castro, M. H., Morrill, C. & Procter, D. J. Catalytic cascade reactions by radical relay. Chem. Soc. Rev. 48, 4626–4638 (2019).Article 
CAS 
PubMed 

Google Scholar 
Holmberg-Douglas, N. & Nicewicz, D. A. Photoredox-catalyzed C–H functionalization reactions. Chem. Rev. 122, 1925–2016 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cheng, W.-M., Shang, R., Fu, M.-C. & Fu, Y. Photoredox-catalysed decarboxylative alkylation of N-heteroarenes with N-(acyloxy)phthalimides. Chem. Eur. J. 23, 2537–2541 (2017).Article 
CAS 
PubMed 

Google Scholar 
Cheng, W.-M., Shang, R. & Fu, Y. Photoredox/Brønsted acid co-catalysis enabling decarboxylative coupling of amino acid and peptide redox-active esters with N-heteroarenes. ACS Catal. 7, 907–911 (2017).Article 
CAS 

Google Scholar 
Fu, M.-C., Shang, R., Zhao, B., Wang, B. & Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 363, 1429–1434 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).Article 
CAS 

Google Scholar 
Zheng, D. & Studer, A. Asymmetric synthesis of heterocyclic γ-amino-acid and diamine derivatives by three-component radical cascade reactions. Angew. Chem. Int. Ed. 58, 15803–15807 (2019).Article 
CAS 

Google Scholar 
Tan, L. et al. Photocatalytic decarboxylative Minisci reaction catalyzed by palladium-loaded gallium nitride. Precis. Chem. 1, 437–442 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
He, G.-C. et al. Photo-induced catalytic C−H heteroarylation of group 8 metallocenes. Cell Rep. Phys. Sci. 3, 100768 (2022).Article 
CAS 

Google Scholar 
He, G.-C. et al. Visible-light-induced catalytic construction of tricyclic aza-arenes from halopyridines. Chem. Catal. 3, 100793 (2023).Article 
CAS 

Google Scholar 
Jeffrey, J. L., Petronijević, F. R. & MacMillan, D. W. C. Selective radical–radical cross-couplings: Design of a formal β-mannich reaction. J. Am. Chem. Soc. 137, 8404–8407 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garza-Sanchez, R. A., Patra, T., Tlahuext-Aca, A., Strieth-Kalthoff, F. & Glorius, F. DMSO as a switchable alkylating agent in heteroarene C−H functionalization. Chem. Eur. J. 24, 10064–10068 (2018).Article 
CAS 
PubMed 

Google Scholar 
Li, J., Huang, C.-Y., Han, J.-T. & Li, C.-J. Development of a quinolinium/cobaloxime dual photocatalytic system for oxidative C–C cross-couplings via H2 release. ACS Catal. 11, 14148–14158 (2021).Article 
CAS 

Google Scholar 
Constantin, T. et al. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Juliá, F., Constantin, T. & Leonori, D. Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis. Chem. Rev. 122, 2292–2352 (2022).Article 
PubMed 

Google Scholar 
Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(iii) complex. Chem. Mater. 17, 5712–5719 (2005).Article 
CAS 

Google Scholar 
Bryden, M. A. et al. Lessons learnt in photocatalysis–the influence of solvent polarity and the photostability of the photocatalyst. Chem. Sci. 15, 3741–3757 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wayner, D. D. M. & Houmam, A. Redox properties of free radicals. Acta Chem. Scand. 52, 377–384 (1998).Article 
CAS 

Google Scholar 
Popov, K. K. et al. Reductive amination revisited: Reduction of aldimines with trichlorosilane catalyzed by dimethylformamide─functional group tolerance, scope, and limitations. J. Org. Chem. 87, 920–943 (2022).Article 
CAS 
PubMed 

Google Scholar 
Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, C. et al. Uncanonical semireduction of quinolines and isoquinolines via regioselective HAT-promoted hydrosilylation. J. Am. Chem. Soc. 145, 25–31 (2023).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles