Long-range enhancements of micropollutant adsorption on metal-promoted photocatalysts

Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagran, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018).Article 
CAS 
PubMed 

Google Scholar 
Clara, M. et al. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 39, 4797–4807 (2005).Article 
CAS 
PubMed 

Google Scholar 
Kim, M.-K. & Zoh, K.-D. Occurrence and removals of micropollutants in water environment. Environ. Eng. Res. 21, 319–332 (2016).Article 

Google Scholar 
Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).Article 

Google Scholar 
Hodges, B. C., Cates, E. L. & Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lotfi, S., Fischer, K., Schulze, A. & Schäfer, A. I. Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nat. Nanotechnol. 17, 417–423 (2022).Article 
CAS 
PubMed 

Google Scholar 
Chen, R. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 610, 296–301 (2022).Article 
CAS 
PubMed 

Google Scholar 
Laskowski, F. A. L. et al. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry. Nat. Mater. 19, 69–76 (2020).Article 
CAS 
PubMed 

Google Scholar 
Liu, B. et al. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 135, 9995–9998 (2013).Article 
CAS 
PubMed 

Google Scholar 
Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).Article 
CAS 
PubMed 

Google Scholar 
Schneider, J. et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. et al. Interfacial oxygen vacancies yielding long-lived holes in hematite mesocrystal-based photoanodes. Nat. Commun. 10, 4832 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Tan, S. et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photon. 11, 806–812 (2017).Article 
CAS 

Google Scholar 
Hong, J. W., Wi, D. H., Lee, S.-U. & Han, S. W. Metal–semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. J. Am. Chem. Soc. 138, 15766–15773 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wang, M., Ye, M., Iocozzia, J., Lin, C. & Lin, Z. Plasmon‐mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 3, 1600024 (2016).Article 

Google Scholar 
Mao, X., Liu, C., Hesari, M., Zou, N. & Chen, P. Super-resolution imaging of non-fluorescent reactions via competition. Nat. Chem. 11, 687–694 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ye, R. et al. Nanoscale cooperative adsorption for materials control. Nat. Commun. 12, 4287 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dong, B. et al. In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement. Nat. Catal. 1, 135–140 (2018).Article 

Google Scholar 
Roeffaers, M. B. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).Article 
CAS 
PubMed 

Google Scholar 
Roeffaers, M. B. et al. Super‐resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. 48, 9285–9289 (2009).Article 
CAS 

Google Scholar 
Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Keith, L. & Telliard, W. ES&T special report: priority pollutants: I-a perspective view. Environ. Sci. Technol. 13, 416–423 (1979).Article 

Google Scholar 
Zhang, Z. & Yates, J. T. Jr Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012).Article 
CAS 
PubMed 

Google Scholar 
Brillson, L. J. Surfaces and interfaces of zinc oxide. In Semiconductors and Semimetals (eds. Svensson, B. G., Pearton, S. J. & Jagadish, C.) 105–157 (Elsevier, 2013).Broadway, D. A. et al. Spatial mapping of band bending in semiconductor devices using in situ quantum sensors. Nat. Electron. 1, 502–507 (2018).Article 
CAS 

Google Scholar 
Butler, C. J. et al. Mapping polarization induced surface band bending on the Rashba semiconductor BiTeI. Nat. Commun. 5, 4066 (2014).Article 
CAS 
PubMed 

Google Scholar 
Nipane, A., Jayanti, S., Borah, A. & Teherani, J. T. Electrostatics of lateral p–n junctions in atomically thin materials. J. Appl. Phys. 122, 194501 (2017).Article 

Google Scholar 
Mao, X. & Chen, P. Inter-facet junction effects on particulate photoelectrodes. Nat. Mater. 21, 331–337 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zheng, C. et al. Direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures. ACS Nano 11, 2785–2793 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hoffmann, R. A chemical and theoretical way to look at bonding on surfaces. Rev. Mod. Phys. 60, 601–628 (1988).Article 
CAS 

Google Scholar 
Hu, K. et al. Kinetic pathway for interfacial electron transfer from a semiconductor to a molecule. Nat. Chem. 8, 853–859 (2016).Article 
CAS 
PubMed 

Google Scholar 
Chen, G. et al. Bimetallic effect of single nanocatalysts visualized by super-resolution catalysis imaging. ACS Cent. Sci. 3, 1189–1197 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).Article 
CAS 

Google Scholar 
Gärtner, W. W. Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84 (1959).Article 

Google Scholar 
Butler, M. Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys. 48, 1914–1920 (1977).Article 
CAS 

Google Scholar 
Zhao, J. et al. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 129, 7647–7656 (2007).Article 
CAS 
PubMed 

Google Scholar 
Zhan, C. et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018).Article 

Google Scholar 
Li, Y. et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat. Commun. 7, 12446 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).Article 

Google Scholar 
Hesari, M., Sambur, J. B., Mao, X., Jung, W. & Chen, P. Quantifying photocurrent loss of a single particle-particle interface in nanostructured photoelectrodes. Nano Lett. 19, 958–962 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, K. et al. Correlation between the H2 response and its oxidation over TiO2 and N doped TiO2 under UV irradiation induced by Fermi level. Appl. Catal. B 250, 89–98 (2019).Article 
CAS 

Google Scholar 
Hamamoto, N. et al. Effect of oxygen vacancies on adsorption of small molecules on anatase and rutile TiO2 surfaces: a frontier orbital approach. J. Phys. Chem. C 125, 3827–3844 (2021).Article 
CAS 

Google Scholar 
Quesada-Cabrera, R., Sotelo-Vazquez, C., Darr, J. A. & Parkin, I. P. Critical influence of surface nitrogen species on the activity of N-doped TiO2 thin-films during photodegradation of stearic acid under UV light irradiation. Appl. Catal. B 160-161, 582–588 (2014).Article 
CAS 

Google Scholar 
Chen, T.-Y. et al. Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells. Nat. Commun. 6, 7445 (2015).Article 
PubMed 

Google Scholar 
Chen, P. & Chen, T.-Y. MATLAB code package: iQPALM (image-based quantitative photo-activated localization microscopy). figshare https://doi.org/10.6084/m9.figshare.12642617.v1 (2020).Ben-Shahar, Y. et al. Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nat. Commun. 7, 10413 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Waxenegger, J., Trügler, A. & Hohenester, U. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput. Phys. Commun. 193, 138–150 (2015).Article 
CAS 

Google Scholar 
Hohenester, U. & Trügler, A. MNPBEM—a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).Article 
CAS 

Google Scholar 
Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).Article 
CAS 

Google Scholar 
Wypych, A. et al. Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. J. Nanomater. 2014, 1–9 (2014).Article 

Google Scholar 

Hot Topics

Related Articles