Electrochemical deoxygenative amination of stabilized alkyl radicals from activated alcohols

Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 61, 5822–5880 (2018).Article 
CAS 
PubMed 

Google Scholar 
Guillena, G., Ramón, D. J. & Yus, M. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem. Rev. 110, 1611–1641 (2010).Article 
CAS 
PubMed 

Google Scholar 
Magano, J. & Dunetz, J. R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 111, 2177–2250 (2011).Article 
CAS 
PubMed 

Google Scholar 
Jiang, H.-M. et al. Copper-promoted cross-coupling of nitroarenes with 4-alkyl-1,4-dihydropyridines using a peroxide-driven radical reductive strategy. Org. Chem. Front. 9, 4070–4077 (2022).Article 
CAS 

Google Scholar 
Sheng, T. et al. Electrochemical decarboxylative N-alkylation of heterocycles. Org. Lett. 22, 7594–7598 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Botta, M., De Angelis, F., Gambacorta, A., Labbiento, L. & Nicoletti, R. Alcohols and aluminum alkoxides in the presence of Raney nickel as alkylating agents. 3. Reduction of Schiff bases with isopropyl alcohol and aluminum isopropoxide in the presence of Raney. nickel. J. Org. Chem. 50, 1916–1919 (1985).Article 
CAS 

Google Scholar 
Surry, D. S. & Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47, 6338–6361 (2008).Article 
CAS 

Google Scholar 
Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 41, 1534–1544 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Surry, D. S. & Buchwald, S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. 2, 27–50 (2011).Article 
CAS 
PubMed 

Google Scholar 
Ruiz-Castillo, P., Blackmond, D. G. & Buchwald, S. L. Rational ligand design for the arylation of hindered primary amines guided by reaction progress kinetic analysis. J. Am. Chem. Soc. 137, 3085–3092 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ley, S. V. & Thomas, A. W. Modern synthetic methods for copper-mediated C(aryl) −O, C(aryl)−N, and C(aryl)−S bond formation. Angew. Chem. Int. Ed. 42, 5400–5449 (2003).Article 
CAS 

Google Scholar 
Surry, D. S. & Buchwald, S. L. Diamine ligands in copper-catalyzed reactions. Chem. Sci. 1, 13–31 (2010).Article 
CAS 
PubMed 

Google Scholar 
West, M. J., Fyfe, J. W. B., Vantourout, J. C. & Watson, A. J. B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev. 119, 12491–12523 (2019).Article 
CAS 
PubMed 

Google Scholar 
Sapountzis, I. & Knochel, P. A new general preparation of polyfunctional diarylamines by the addition of functionalized arylmagnesium compounds to nitroarenes. J. Am. Chem. Soc. 124, 9390–9391 (2002).Article 
CAS 
PubMed 

Google Scholar 
Rauser, M., Ascheberg, C. & Niggemann, M. Electrophilic amination with nitroarenes. Angew. Chem. Int. Ed. 56, 11570–11574 (2017).Article 
CAS 

Google Scholar 
Suárez-Pantiga, S., Hernández-Ruiz, R., Virumbrales, C., Pedrosa, M. R. & Sanz, R. Reductive molybdenum-catalyzed direct amination of boronic acids with nitro compounds. Angew. Chem. Int. Ed. 58, 2129–2133 (2019).Article 

Google Scholar 
Cheung, C. W., Ma, J.-A. & Hu, X. Manganese-mediated reductive transamidation of tertiary amides with nitroarenes. J. Am. Chem. Soc. 140, 6789–6792 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lu, Y.-H. et al. EtOH-catalyzed electrosynthesis of imidazolidine-fused sulfamidates from N-sulfonyl ketimines, N-arylglycines and formaldehyde. Green Chem. 25, 5539–5542 (2023).Article 
ADS 
CAS 

Google Scholar 
Jiang, J. et al. Electrochemical radical annulation of 2-alkynyl biaryls with diselenides under catalyst- and chemical oxidant-free conditions. Chin. Chem. Lett. 34, 108699 (2023).Article 
CAS 

Google Scholar 
Chen, X., Jiang, J., Huang, X.-J. & He, W.-M. Electrochemical oxidative radical cascade reactions for the synthesis of difluoromethylated benzoxazines. Org. Chem. Front. 10, 3898–3902 (2023).Article 
CAS 

Google Scholar 
Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Cheung, C. W. & Hu, X. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides. Nat. Commun. 7, 12494 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Meng, L., Yang, J., Duan, M., Wang, Y. & Zhu, S. Facile synthesis of chiral arylamines, alkylamines and amides by enantioselective NiH-catalyzed hydroamination. Angew. Chem. Int. Ed. 60, 23584–23589 (2021).Article 
CAS 

Google Scholar 
Li, G., Qin, Z. & Radosevich, A. T. P(III)/P(V)-catalyzed methylamination of arylboronic acids and esters: reductive C–N coupling with nitromethane as a methylamine surrogate. J. Am. Chem. Soc. 142, 16205–16210 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Q., Ni, S., Wang, X., Wang, Y. & Pan, Y. Visible-light-mediated tungsten-catalyzed C-H amination of unactivated alkanes with nitroarenes. Sci. China Chem. 65, 678–685 (2022).Article 
CAS 

Google Scholar 
Guo, P. et al. Dynamic kinetic cross-electrophile arylation of benzyl alcohols by nickel catalysis. J. Am. Chem. Soc. 143, 513–523 (2021).Article 
CAS 
PubMed 

Google Scholar 
Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cornella, J., Zarate, C. & Martin, R. Metal-catalyzed activation of ethers via C–O bond cleavage: a new strategy for molecular diversity. Chem. Soc. Rev. 43, 8081–8097 (2014).Article 
CAS 
PubMed 

Google Scholar 
Intermaggio, N. E., Millet, A., Davis, D. L. & MacMillan, D. W. C. Deoxytrifluoromethylation of alcohols. J. Am. Chem. Soc. 144, 11961–11968 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oswood, C. J. & MacMillan, D. W. C. Selective isomerization via transient thermodynamic control: dynamic epimerization of trans to cis diols. J. Am. Chem. Soc. 144, 93–98 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lee, D.-H., Kwon, K.-H. & Yi, C. S. Selective catalytic C–H alkylation of alkenes with alcohols. Science 333, 1613–1616 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Jin, J. & MacMillan, D. W. C. Alcohols as alkylating agents in heteroarene C–H functionalization. Nature 525, 87–90 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, Z. et al. Triphenylphosphine-assisted dehydroxylative Csp3–N bond formation via electrochemical oxidation. Chem. Commun. 55, 15089–15092 (2019).Article 
CAS 

Google Scholar 
Jiang, Y., Yu, H., Fu, Y. & Liu, L. Redox potentials of trifluoromethyl-containing compounds. Sci. China Chem. 58, 673–683 (2015).Article 
CAS 

Google Scholar 
Furet, P. et al. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett. 23, 3741–3748 (2013).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Y. et al. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem. Rev. 116, 422–518 (2016).Article 
CAS 
PubMed 

Google Scholar 
Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).Article 
CAS 
PubMed 

Google Scholar 
Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).Article 
CAS 
PubMed 

Google Scholar 
Min, Y. et al. Diverse synthesis of chiral trifluoromethylated alkanes via nickel-catalyzed asymmetric reductive cross-coupling fluoroalkylation. Angew. Chem. Int. Ed. 60, 9947–9952 (2021).Article 
CAS 

Google Scholar 
Zhou, M. et al. Alkyl sulfinates as cross-coupling partners for programmable and stereospecific installation of C(sp3) bioisosteres. Nat. Chem. 15, 550–559 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Q. et al. Decarboxylative borylation of stabilized and activated carbon radicals. Angew. Chem. Int. Ed. 59, 21875–21879 (2020).Article 
CAS 

Google Scholar 
Gianatassio, R. et al. Simple sulfinate synthesis enables C–H trifluoromethylcyclopropanation. Angew. Chem. Int. Ed. 53, 9851–9855 (2014).Article 
CAS 

Google Scholar 
Fu, M.-C., Shang, R., Cheng, W.-M. & Fu, Y. Boron-catalyzed N-alkylation of amines using carboxylic acids. Angew. Chem. Int. Ed. 54, 9042–9046 (2015).Article 
CAS 

Google Scholar 
Sorribes, I., Junge, K. & Beller, M. Direct catalytic N-alkylation of amines with carboxylic acids. Angew. Chem. Int. Ed. 136, 14314–14319 (2014).CAS 

Google Scholar 
Yoshida, J.-I., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).Article 
CAS 
PubMed 

Google Scholar 
Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).Article 
CAS 
PubMed 

Google Scholar 
Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Waldvogel, S. R., Lips, S., Selt, M., Riehl, B. & Kampf, C. J. Electrochemical arylation reaction. Chem. Rev. 118, 6706–6765 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).Article 
ADS 
CAS 

Google Scholar 
Meyer, T. H., Choi, I., Tian, C. & Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem 6, 2484–2496 (2020).Article 
CAS 

Google Scholar 
Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Recent advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gao, Y., Wu, Z., Yu, L., Wang, Y. & Pan, Y. Alkyl carbazates for electrochemical deoxygenative functionalization of heteroarenes. Angew. Chem. Int. Ed. 59, 10859–10863 (2020).Article 
CAS 

Google Scholar 
Li, Z. et al. Electrochemically enabled, nickel-catalyzed dehydroxylative cross-coupling of alcohols with aryl halides. J. Am. Chem. Soc. 143, 3536–3543 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Dehydroxylative arylation of alcohols via paired electrolysis. Org. Lett. 24, 7476–7481 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ibrahim, M. Y. S. et al. Electrochemical nickel-catalyzed C(sp3)–C(sp3) cross-coupling of alkyl halides with alkyl tosylates. J. Am. Chem. Soc. 145, 17023–17028 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, J., He, L., Liu, X., Cheng, X. & Li, G. Electrochemical hydrogenation with gaseous ammonia. Angew. Chem. Int. Ed. 58, 1759–1763 (2019).Article 
CAS 

Google Scholar 
Zhu, L. et al. Electrocatalytic generation of amidyl radicals for olefin hydroamidation: use of solvent effects to enable anilide oxidation. Angew. Chem. Int. Ed. 55, 2226–2229 (2016).Article 
CAS 

Google Scholar 
Xiong, P., Hemming, M., Ivlev, S. I. & Meggers, E. Electrochemical enantioselective nucleophilic α-C(sp3)–H alkenylation of 2-acyl imidazoles. J. Am. Chem. Soc. 144, 6964–6971 (2022).Article 
CAS 
PubMed 

Google Scholar 
Taniguchi, T., Sugiura, Y., Zaimoku, H. & Ishibashi, H. Iron-catalyzed oxidative addition of alkoxycarbonyl radicals to alkenes with carbazates and air. Angew. Chem. Int. Ed. 49, 10154–10157 (2010).Article 
CAS 

Google Scholar 
Xu, X. et al. Iron-catalyzed arylalkoxycarbonylation of N-aryl acrylamides with carbazates. J. Org. Chem. 79, 446–451 (2014).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles