Iron photocatalysis via Brønsted acid-unlocked ligand-to-metal charge transfer

Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C-H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, H. & Studer, A. Intermolecular radical carboamination of alkenes. Chem. Soc. Rev. 49, 1790–1811 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yoon, T. P., Ischay, M. A. & Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2, 527–532 (2010).Article 
CAS 
PubMed 

Google Scholar 
Narayanam, J. M. & Stephenson, C. R. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).Article 
CAS 
PubMed 

Google Scholar 
Xuan, J. & Xiao, W.-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 51, 6828–6838 (2012).Article 
CAS 

Google Scholar 
Prier, C. K., Rankic, D. A. & MacMillan, D. W. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, P., Liu, W. & Li, C.-J. Catalyst-free and redox-neutral innate trifluoromethylation and alkylation of aromatics enabled by light. J. Am. Chem. Soc. 139, 14315–14321 (2017).Article 
CAS 
PubMed 

Google Scholar 
Marzo, L., Pagire, S. K., Reiser, O. & Konig, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).Article 
CAS 

Google Scholar 
Fu, M.-C., Shang, R. & Fu, Y. Photocatalytic decarboxylative alkylations mediated bytriphenylphosphine and sodium iodide. Science 363, 1429–1434 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Holmberg-Douglas, N. & Nicewicz, D. A. Photoredox-catalyzed C-H functionalization reactions. Chem. Rev. 122, 1925–2016 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bellotti, P., Huang, H.-M., Faber, T. & Glorius, F. Photocatalytic late-stage C-H functionalization. Chem. Rev. 123, 4237–4352 (2023).Article 
CAS 
PubMed 

Google Scholar 
Golden, D. L. et al. Benzylic C-H esterification with limiting C-H substrate enabled by photochemical redox buffering of the Cu catalyst. J. Am. Chem. Soc. 145, 9434–9440 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abderrazak, Y., Bhattacharyya, A. & Reiser, O. Visible-light-induced homolysis of Earth-abundant metal-substrate complexes: a complementary activation strategy in photoredox catalysis. Angew. Chem. Int. Ed. 60, 21100–21115 (2021).Article 
CAS 

Google Scholar 
Chang, L., An, Q., Duan, L., Feng, K. & Zuo, Z. Alkoxy radicals see the light: newparadigms of photochemical synthesis. Chem. Rev. 122, 2429–2486 (2022).Article 
CAS 
PubMed 

Google Scholar 
Juliá, F. Ligand‐to‐metal charge transfer (LMCT) photochemistry at 3d‐metal complexes: an emerging tool for sustainable organic synthesis. ChemCatChem 14, e202200916 (2022).Article 

Google Scholar 
Li, Q. Y. et al. Decarboxylative cross-nucleophile coupling via ligand-to-metal charge transfer photoexcitation of Cu(II) carboxylates. Nat. Chem. 14, 94–99 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsurugi, H. & Mashima, K. Renaissance of homogeneous cerium catalysts with unique Ce(IV/III) couple: redox-mediated organic transformations involving homolysis of Ce(IV)-ligand covalent bonds. J. Am. Chem. Soc. 143, 7879–7890 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhao, R. & Shi, L. A renaissance of ligand-to-metal charge transfer by cerium photocatalysis. Org. Chem. Front. 5, 3018–3021 (2018).Article 
CAS 

Google Scholar 
Zhou, W.-J. et al. Light runs across iron catalysts in organic transformations. Chem. Eur. J. 26, 15052–15064 (2020).Article 
CAS 
PubMed 

Google Scholar 
Nicewicz, D., Roth, H. & Romero, N. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett 27, 714–723 (2015).Article 

Google Scholar 
Denkler, L. M., et al. A general iron-catalyzed decarboxylative oxygenation of aliphatic carboxylic acids. Angew. Chem. Int. Ed. e202403292 (2024). During the revisions of our manuscript, Bunescu, A. et al. published this related work.Su, W., Xu, P. & Ritter, T. Decarboxylative hydroxylation of benzoic acids. Angew. Chem. Int. Ed. 60, 24012–24017 (2021).Article 
CAS 

Google Scholar 
Xu, P., Lopez-Rojas, P. & Ritter, T. Radical decarboxylative carbometalation of benzoic acids: a solution to aromatic decarboxylative fluorination. J. Am. Chem. Soc. 143, 5349–5354 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chen, T. Q. et al. A unified approach to decarboxylative halogenation of (hetero)aryl carboxylic acids. J. Am. Chem. Soc. 144, 8296–8305 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dow, N. W. et al. Decarboxylative borylation and cross-coupling of (hetero)aryl acids enabled by copper charge transfer catalysis. J. Am. Chem. Soc. 144, 6163–6172 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, P., Su, W. & Ritter, T. Decarboxylative sulfoximination of benzoic acids enabled by photoinduced ligand-to-copper charge transfer. Chem. Sci. 13, 13611–13616 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Depecker, C., Marzouk, H., Trevin, S. & Devynck, J. Trifluoromethylation of aromatic compounds via Kolbe electrolysis in pure organic solvent. Study on laboratory and pilot scale. New. J. Chem. 23, 739–742 (1999).Article 
CAS 

Google Scholar 
Bian, K.-J. et al. Photocatalytic hydrofluoroalkylation of alkenes with carboxylic acids. Nat. Chem. 15, 1683–1692 (2023). During the revisions of our manuscript, West, J. G. et al. published this related work.Article 
CAS 
PubMed 

Google Scholar 
Qi, X.-K. et al. Photoinduced hydrodifluoromethylation and hydromethylation of alkenes enabled by ligand-to-iron charge transfer mediated decarboxylation. ACS Catal. 14, 1300–1310 (2024). During the revisions of our manuscript, Xia, W. et al. published this related work.Article 
CAS 

Google Scholar 
Zhang, W. et al. Leaving group assisted strategy for photoinduced fluoroalkylations using N-hydroxybenzimidoyl chloride esters. Angew. Chem. Int. Ed. 58, 624–627 (2019).Article 
CAS 

Google Scholar 
Lv, D. et al. Iron-catalyzed radical asymmetric aminoazidation and diazidation of styrenes. Angew. Chem. Int. Ed. 60, 12455–12460 (2021).Article 
CAS 

Google Scholar 
Zhang, Z. et al. Controllable C-H alkylation of polyethers via iron photocatalysis. J. Am. Chem. Soc. 145, 7612–7620 (2023).Article 
CAS 
PubMed 

Google Scholar 
Feng, G., Wang, X. & Jin, J. Decarboxylative C-C and C-N bond formation by ligand-accelerated iron photocatalysis. Eur. J. Org. Chem. 2019, 6728–6732 (2019).Article 
CAS 

Google Scholar 
Li, Z., Wang, X., Xia, S. & Jin, J. Ligand-accelerated iron photocatalysis enabling decarboxylative alkylation of heteroarenes. Org. Lett. 21, 4259–4265 (2019).Article 
CAS 
PubMed 

Google Scholar 
Xia, S., Hu, K., Lei, C. & Jin, J. Intramolecular aromatic C-H acyloxylation enabled by iron photocatalysis. Org. Lett. 22, 1385–1389 (2020).Article 
CAS 
PubMed 

Google Scholar 
Jin, Y. et al. Photo-induced direct alkynylation of methane and other light alkanes by iron catalysis. Green. Chem. 23, 9406–9411 (2021).Article 
CAS 

Google Scholar 
Kang, Y.-C., Treacy, S. M. & Rovis, T. Iron-catalyzed photoinduced LMCT: a 1o C-H abstraction enables skeletal rearrangements and C(sp3)-H alkylation. ACS Catal. 11, 7442–7449 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bian, K.-J., Kao, S.-C., Nemoto, D. Jr., Chen, X.-W. & West, J. G. Photochemical diazidation of alkenes enabled by ligand-to-metal charge transfer and radical ligand transfer. Nat. Commun. 13, 7881 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dai, Z.-Y., Zhang, S.-Q., Hong, X., Wang, P.-S. & Gong, L.-Z. A practical FeCl3/HCl photocatalyst for versatile aliphatic C–H functionalization. Chem. Catal. 2, 1211–1222 (2022).Article 
CAS 

Google Scholar 
Lu, Y.-C. & West, J. G. Chemoselective decarboxylative protonation enabled by cooperative Earth‐abundant element catalysis. Angew. Chem. Int. Ed. 135, e202213055 (2022).Article 

Google Scholar 
Tu, J.-L. et al. Iron-catalyzed ring-opening of cyclic carboxylic acids enabled by photoinduced ligand-to-metal charge transfer. Green. Chem. 24, 5553–5558 (2022).Article 
CAS 

Google Scholar 
Zhang, M., Zhang, J., Li, Q. & Shi, Y. Iron-mediated ligand-to-metal charge transfer enables 1,2-diazidation of alkenes. Nat. Commun. 13, 7880 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Q. et al. Iron-catalyzed photoredox functionalization of methane and heavier gaseous alkanes: scope, kinetics, and computational studies. Org. Lett. 24, 1901–1906 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kao, S.-C. et al. Photochemical iron-catalyzed decarboxylative azidation via the merger of ligand-to-metal charge transfer and radical ligand transfer catalysis. Chem. Catal. 3, 100603 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, W.-M., Feng, K.-W., Hu, R.-G., Guo, Y.-J. & Li, Y. Visible-light-induced iron redox-catalyzed selective transformation of biomass into formic acid. Chem 9, 430–442 (2023).Article 
CAS 

Google Scholar 
Xiong, N., Li, Y. & Zeng, R. Merging photoinduced iron-catalyzed decarboxylation with copper catalysis for C–N and C–C couplings. ACS Catal. 13, 1678–1685 (2023).Article 
CAS 

Google Scholar 
Lutovsky, G. A., Gockel, S. N., Bundesmann, M. W., Bagley, S. W. & Yoon, T. P. Iron-mediated modular decarboxylative cross-nucleophile coupling. Chem 9, 1610–1621 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Muller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).Article 
ADS 
PubMed 

Google Scholar 
Honer, M., Schubiger, P. A. & Ametamey, S. M. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).Article 
PubMed 

Google Scholar 
O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 37, 308–319 (2008).Article 
PubMed 

Google Scholar 
Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).Article 
CAS 
PubMed 

Google Scholar 
Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev. 114, 2432–2506 (2008).Article 

Google Scholar 
Caron, S. Where does the fluorine come from? A review on the challenges associated with the synthesis of organofluorine compounds. Org. Process Res. Dev. 24, 470–480 (2020).Article 
CAS 

Google Scholar 
Josephson, B. et al. Light-driven post-translational installation of reactive protein side chains. Nature 585, 530–537 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Xu, W., Jiang, H., Leng, J., Ong, H. W. & Wu, J. Visible-light-induced selective defluoroborylation of polyfluoroarenes, gem-difluoroalkenes, and trifluoromethylalkenes. Angew. Chem. Int. Ed. 59, 4009–4016 (2020).Article 
CAS 

Google Scholar 
Intermaggio, N. E., Millet, A., Davis, D. L. & MacMillan, D. W. Deoxytrifluoromethylation of alcohols. J. Am. Chem. Soc. 144, 11961–11968 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qing, F.-L. et al. A fruitful decade of organofluorine chemistry: new reagents and reactions. CCS Chem. 4, 2518–2549 (2022).Article 
CAS 

Google Scholar 
Xu, P., Fan, W., Chen, P. & Liu, G. Enantioselective radical trifluoromethylation of benzylic C-H bonds via cooperative photoredox and copper catalysis. J. Am. Chem. Soc. 144, 13468–13474 (2022).Article 
CAS 
PubMed 

Google Scholar 
Beatty, J. W., Douglas, J. J., Cole, K. P. & Stephenson, C. R. J. A scalable and operationally simple radical trifluoromethylation. Nat. Commun. 6, 7919 (2015).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Beatty, J. W. et al. Photochemical perfluoroalkylation with pyridine N-oxides: mechanistic insights and performance on a kilogram scale. Chem 1, 456–472 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yin, D., Su, D. & Jin, J. Photoredox catalytic trifluoromethylation and perfluoroalkylation of arenes using trifluoroacetic and related carboxylic acids. Cell Rep. Phys. Sci. 1, 100141 (2020).Article 
ADS 
CAS 

Google Scholar 
Zhang, K., Rombach, D., Notel, N. Y., Jeschke, G. & Katayev, D. Radical trifluoroacetylation of alkenes triggered by a visible-light-promoted C-O bond fragmentation of trifluoroacetic anhydride. Angew. Chem. Int. Ed. 60, 22487–22495 (2021).Article 
CAS 

Google Scholar 
Giri, R. et al. Photoredox activation of anhydrides for the solvent-controlled switchable synthesis of gem-difluoro compounds. Angew. Chem. Int. Ed. 61, e202209143 (2022).Article 
ADS 
CAS 

Google Scholar 
Wu, W., You, Y. & Weng, Z. Recent advances in the synthesis of fluoroalkylated compounds using fluoroalkyl anhydrides. Chin. Chem. Lett. 33, 4517–4530 (2022).Article 
CAS 

Google Scholar 
Zhang, M. et al. Photocatalytic fluoroalkylations of (hetero)arenes enabled by the acid-triggered reactivity umpolung of acetoxime esters. Chem. Catal. 2, 1793–1806 (2022).Article 
CAS 

Google Scholar 
Fernández-García, S., Chantzakou, V. O. & Juliá-Hernández, F. Direct decarboxylation of trifluoroacetates enabled by iron photocatalysis. Angew. Chem. Int. Ed. 63, e202311984 (2024). During the revisions of our manuscript, Juliá-Hernández, F. et al. published this related work.Article 

Google Scholar 
Yu, W., Xu, X.-H. & Qing, F.-L. Silver-mediated oxidative fluorotrifluoromethylation of unactivated alkenes. Adv. Synth. Catal. 357, 2039–2044 (2015).Article 
CAS 

Google Scholar 
Liu, Z. et al. Radical carbofluorination of unactivated alkenes with fluoride ion. J. Am. Chem. Soc. 140, 6169–6175 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pitts, C. R., Ling, B., Snyder, J. A., Bragg, A. E. & Lectka, T. Aminofluorination of cyclopropanes: a multifold approach through a common, catalytically generated intermediate. J. Am. Chem. Soc. 138, 6598–6609 (2016).Article 
CAS 
PubMed 

Google Scholar 
Riener, M. & Nicewicz, D. A. Synthesis of cyclobutane lignans via an organic single electron oxidant-electron relay system. Chem. Sci. 4, 2625–2629 (2013).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles