Unlocking the secrets of ideal fast ion conductors for all-solid-state batteries

Tian, Y. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 1–7 (2016).Article 

Google Scholar 
Tang, W. et al. Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts. ACS Energy Lett. 1, 659–664 (2016).Article 
CAS 

Google Scholar 
Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).Article 
CAS 

Google Scholar 
Zhao, Y. & Daemen, L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134, 15042–15047 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).Article 
CAS 
PubMed 

Google Scholar 
Canepa, P. et al. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8, 1759 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Richards, W. D. et al. Design and synthesis of the superionic conductor Na10SnP2S12. Nat. Commun. 7, 11009 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016).Article 

Google Scholar 
Bachman, J. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).Article 
CAS 
PubMed 

Google Scholar 
Famprikis, T., Canepa, P., Dawson, J., Islam, M. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).Article 
CAS 
PubMed 

Google Scholar 
Struzik, M., Garbayo, I., Pfenninger, R. & Rupp, J. L. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv. Mater. 30, 1804098 (2018).Article 

Google Scholar 
Wang, B. et al. Fast ionic conduction in semiconductor CeO2-δ electrolyte fuel cells. NPG Asia Mater. 11, 51 (2019).Article 

Google Scholar 
Sau, K. et al. Colossal barocaloric effects in the complex hydride Li2B12H12. Sci. Rep. 11, 11915 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zeng, M. et al. Colossal reversible barocaloric effects in a plastic crystal mediated by lattice vibrations and ion diffusion, Adv. Sci. p. 2306488. This article presents a balanced barocaloric effect largely contributing from vibrational entropy in LiCB11H12, where molecular rotation and cation diffusion are present together (2024).Aznar, A. et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat. Commun. 8, 1851 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Tufail, M. K., Zhai, P., Jia, M., Zhao, N. & Guo, X. Design of solid electrolytes with fast ion transport: computation-driven and practical approaches. Energy Mater. Adv. 4, 0015 (2023).Article 
CAS 

Google Scholar 
Tufail, M. K. et al. Evaluation of solid electrolytes: development of conventional and interdisciplinary approaches. Interdiscip. Mater. 2, 529–568 (2023).Article 

Google Scholar 
Quartarone, E. & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011).Article 
CAS 
PubMed 

Google Scholar 
Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 1–16 (2017).Article 

Google Scholar 
Fan, L., Wei, S., Li, S., Li, Q. & Lu, Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018).Article 

Google Scholar 
Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).Article 
CAS 
PubMed 

Google Scholar 
Lu, Y., Li, L., Zhang, Q., Niu, Z. & Chen, J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2, 1747–1770 (2018).Article 
CAS 

Google Scholar 
Malavasi, L., Fisher, C. A. & Islam, M. S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem. Soc. Rev. 39, 4370–4387 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kisu, K. et al. Monocarborane cluster as a stable fluorine-free calcium battery electrolyte. Sci. Rep. 11, 7563 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kisu, K. et al. Fast divalent conduction in MB12H12⋅12H2O (M= Zn, Mg) complex hydrides: effects of rapid crystal water exchange and application for solid-state electrolytes. J. Mater. Chem. A 10, 24877–24887 (2022).Article 
CAS 

Google Scholar 
Owens, B. & Argue, G. High-conductivity solid electrolytes: MAg4I5. Science 157, 308–310 (1967).Article 
CAS 
PubMed 

Google Scholar 
Bradley, J. & Greene, P. Solids with high ionic conductivity in group 1 halide systems. Trans. Faraday Soc. 63, 424–430 (1967).Article 
CAS 

Google Scholar 
Yao, Y.-F. Y. & Kummer, J. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 29, 2453–2475 (1967).Article 
CAS 

Google Scholar 
Hong, H.-P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 11, 173–182 (1976).Article 
CAS 

Google Scholar 
Goodenough, J., Hong, H.-P. & Kafalas, J. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).Article 
CAS 

Google Scholar 
Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020).Article 
CAS 
PubMed 

Google Scholar 
Pervez, S. A., Cambaz, M. A., Thangadurai, V. & Fichtner, M. Interface in solid-state lithium battery: challenges, progress, and outlook. ACS Appl. Mater. interfaces 11, 22029–22050 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zheng, F., Kotobuki, M., Song, S., Lai, M. & Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198–213 (2018).Article 
CAS 

Google Scholar 
Luo, X. et al. Ionic conductivity enhancement of Li2ZrCl6 halide electrolytes via mechanochemical synthesis for all-solid-state lithium–metal batteries. ACS Appl. Mater. Interfaces 14, 49839–49846 (2022).Article 
CAS 

Google Scholar 
Yin, Y.-C. et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 616, 77–83 (2023).Article 
CAS 
PubMed 

Google Scholar 
Muy, S. et al. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. Iscience 16, 270–282 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schlem, R., Banik, A., Eckardt, M., Zobel, M. & Zeier, W. G. Na3−xEr1−xZrxCl6—a halide-based fast sodium-ion conductor with vacancy-driven ionic transport. ACS Appl. Energy Mater. 3, 10164–10173 (2020).Article 
CAS 

Google Scholar 
Chen, L. et al. Progress and perspective of all-solid-state lithium batteries with high performance at room temperature. Energy Fuels 34, 13456–13472 (2020).Article 
CAS 

Google Scholar 
Kato, Y. et al. All-solid-state batteries with thick electrode configurations. J. Phys. Chem. Lett. 9, 607–613 (2018).Article 
CAS 
PubMed 

Google Scholar 
Alexander, G. V. & Murugan, R. Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: Interfacial chemistry, dendrite growth, and critical current densities. Ionics 27, 4105–4126 (2021).Article 
CAS 

Google Scholar 
Gao, Y. et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020).Article 
CAS 
PubMed 

Google Scholar 
Goodenough, J. B., Hong, H.-P. & Kafalas, J. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).Article 
CAS 

Google Scholar 
Jalem, R. et al. Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25, 425–430 (2013).Article 
CAS 

Google Scholar 
Wang, S. et al. Design principles for sodium superionic conductors. Nat. Commun. 14, 7615 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Q. et al. Visualization of structural evolution and phase distribution of a lithium vanadium oxide (Li1.1V3O8) electrode via an operando and in situ energy dispersive X-ray diffraction technique. Phys. Chem. Chem. Phys. 19, 14160–14169 (2017).Article 
CAS 
PubMed 

Google Scholar 
He, B. et al. High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Sci. Data 7, 151 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
He, B. et al. CAVD, towards better characterization of void space for ionic transport analysis. Sci. Data 7, 153 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shi, W. et al. Software for evaluating long-range electrostatic interactions based on the Ewald summation and its application to electrochemical energy storage materials. J. Phys. Chem. A 126, 5222–5230 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhao, Q. et al. Identifying descriptors for Li+ conduction in cubic Li-argyrodites via hierarchically encoding crystal structure and inferring causality. Energy Storage Mater. 40, 386–393 (2021).Article 

Google Scholar 
Marx, D. & Hutter, J. Ab initio molecular dynamics: theory and implementation. Mod. Methods Algorithms Quantum Chem. 1, 141 (2000).
Google Scholar 
Ren, Y. et al. Portraying the ionic transport and stability window of solid electrolytes by incorporating bond valence-Ewald with dynamically determined decomposition methods. Appl. Phys. Lett. 121, 173904 (2022).Article 
CAS 

Google Scholar 
He, B. et al. A highly efficient and informative method to identify ion transport networks in fast ion conductors. Acta Mater. 203, 116490 (2021).Article 
CAS 

Google Scholar 
Pan, L. et al. Revisiting the ionic diffusion mechanism in Li3PS4 via the joint usage of geometrical analysis and bond valence method. J. Materiom. 5, 688–695 (2019).Article 

Google Scholar 
Adams, S. & Rao, R. P. High power lithium-ion battery materials by computational design. Phys. status solidi (a) 208, 1746–1753 (2011).Article 
CAS 

Google Scholar 
Jónsson, H., Mills, G. and Jacobsen, K.W. Nudged elastic band method for finding minimum energy paths of transitions. Classical and Quantum Dynamics in Condensed Phase Simulations. 385–404 (World Scientific, 1998).Catlow, C. R. A. et al. Advances in computational studies of energy materials. Philos. Trans. R. Soc. A 368, 3379–3456 (2010).Article 
CAS 

Google Scholar 
Mo, Y., Ong, S. P. & Ceder, G. First-principles study of the Li10GeP2S12 lithium superionic conductor material. Chem. Mater. 24, 15–17 (2012).Article 
CAS 

Google Scholar 
Zhang, L. et al. A database of ionic transport characteristics for over 29000 inorganic compounds. Adv. Funct. Mater. 30, 2003087 (2020).Article 
CAS 

Google Scholar 
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).Article 
CAS 
PubMed 

Google Scholar 
Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-controlled Processes. 155 (Springer Berlin Heidelberg, 2007).Sau, K. & Ikeshoji, T. Insights of cationic diffusion in nickel-based honeycomb layered tellurates using molecular dynamics simulation. Solid State Ion. 383, 115982 (2022).Article 
CAS 

Google Scholar 
Francisco, B. E., Stoldt, C. R. & M’Peko, J.-C. Energetics of ion transport in NASICON-type electrolytes. J. Phys. Chem. C. 119, 16432–16442 (2015).Article 
CAS 

Google Scholar 
Dimitrievska, M. et al. Carbon incorporation and anion dynamics as synergistic drivers for ultrafast diffusion in superionic LiCB11H12 and NaCB11H12. Adv. energy Mater. 8, 1703422 (2018).Article 

Google Scholar 
Hooper, A. A study of the electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis. J. Phys. D: Appl. Phys. 10, 1487 (1977).Article 
CAS 

Google Scholar 
Zendejas, M. A. & Thomas, J. O. Conduction mechanisms in solid electrolytes: Na+ beta-alumina. Phys. Scr. 1990, 235 (1990).Article 

Google Scholar 
Peters, C., Bettman, M., Moore, J. W. & Glick, M. D. Refinement of the structure of sodium β-alumina. Acta Crystallogr. B 27, 1826 (1971).Article 
CAS 

Google Scholar 
Radzilowski, R. & Kummer, J. The hydrostatic pressure dependence of the ionic conductivity of β-Aluminas. J. Electrochem. Soc. 118, 714 (1971).Article 
CAS 

Google Scholar 
Roth, W. Stoichiometry and structure of the super ionic conductor silver beta-alumina. J. Solid State Chem. 4, 60–75 (1972).Article 
CAS 

Google Scholar 
Davies, P. K., Garzon, F., Feist, T. & Katzan, C. M. Effects of thermal history upon the behavior of crystalline fast ionic conductors. Solid State Ion. 18, 1120–1128 (1986).Article 

Google Scholar 
Walker, J. & Catlow, C. Structure and transport in non-stoichiometric β Al2O3. J. Phys. C Solid State Phys. 15, 6151 (1982).Article 
CAS 

Google Scholar 
Smith, W. & Gillan, M. A molecular dynamics study of sodium beta”-alumina. J. Phys. Condens. Matter 4, 3215 (1992).Article 
CAS 

Google Scholar 
Hafskjold, B. & Li, X. Molecular dynamics simulations of the Mg2+-stabilized Na+-beta″-alumina. J. Phys. Condens. Matter 7, 2949 (1995).Article 
CAS 

Google Scholar 
Walker, J. & Catlow, C. The structure and energetics of the conduction plane in Naβ Al2O3. Nature 286, 473–474 (1980).Article 
CAS 

Google Scholar 
Engstrom, H., Bates, J., Brundage, W. & Wang, J. Ionic conductivity of sodium beta″-alumina. Solid State Ion. 2, 265–276 (1981).Article 
CAS 

Google Scholar 
Bates, J. et al. Composition, ion-ion correlations and conductivity of beta″-alumina. Solid State Ion. 5, 159–162 (1981).Article 
CAS 

Google Scholar 
Collin, G., Boilot, J., Colomban, P. & Comes, R. Host lattices and superionic properties in β-and β″-alumina.I. Structures and local correlations. Phys. Rev. B 34, 5838 (1986).Article 
CAS 

Google Scholar 
Kummer, J. β-Alumina electrolytes. Prog. solid state Chem. 7, 141–175 (1972).Article 
CAS 

Google Scholar 
Wolf, M., Walker, J. & Catlow, C. Structural and transport properties of β″-Al2O3. Solid State Ion. 13, 33–38 (1984).Article 
CAS 

Google Scholar 
Walker, J. & Catlow, C. Structure and transport in non-stoichiometric β-Al2O3. J. Phys. C: Solid State Phys. 15, 6151–6161 (1982).Article 
CAS 

Google Scholar 
Thomas, J. O. & Zendejas, M. A. Molecular dynamics simulation as a complement to diffraction in the study of disorder in crystals. J. Comput.-Aided Mol. Des. 3, 311–325 (1989).Article 
CAS 
PubMed 

Google Scholar 
Sato, H. & Kikuchi, R. Cation diffusion and conductivity in solid electrolytes. I. J. Chem. Phys. 55, 677–702 (1971).Article 
CAS 

Google Scholar 
Wang, J. & Pickett Jr, D. One-dimensional models for superionic conductors. J. Chem. Phys. 65, 5378–5384 (1976).Article 
CAS 

Google Scholar 
Kamishima, O., Kawamura, K., Hattori, T. & Kawamura, J. Origin of activation energy in a superionic conductor. J. Phys. Condens. Matter 23, 225404 (2011).Article 
CAS 
PubMed 

Google Scholar 
Braconnier, J.-J., Delmas, C., Fouassier, C. & Hagenmuller, P. Comportement electrochimique des phases NaxCoO2. Mater. Res. Bull. 15, 1797–1804 (1980).Article 
CAS 

Google Scholar 
Sarkar, D. et al. Unraveling sodium-ion dynamics in honeycomb-layered Na2MgxZn2−xTeO6 solid electrolytes with solid-state NMR. J. Am. Chem. Soc. 145, 19727–19745 (2023).Article 
CAS 
PubMed 

Google Scholar 
Evstigneeva, M. A., Nalbandyan, V. B., Petrenko, A. A., Medvedev, B. S. & Kataev, A. A. A new family of fast sodium ion conductors: Na2M2TeO6 (M= Ni, Co, Zn, Mg). Chem. Mater. 23, 1174–1181 (2011).Article 
CAS 

Google Scholar 
Sau, K. & Kumar, P. Ion transport in Na2M2TeO6: insights from molecular dynamics simulation. J. Phys. Chem. C. 119, 1651–1658 (2015).Article 
CAS 

Google Scholar 
Masese, T. et al. Honeycomb-layered oxides with silver atom bilayers and emergence of non-abelian SU (2) interactions. Adv. Sci. 10, 2204672 (2022).Article 

Google Scholar 
Wu, J.-F., Wang, Q. & Guo, X. Sodium-ion conduction in Na2Zn2TeO6 solid electrolytes. J. Power Sources 402, 513–518 (2018).Article 
CAS 

Google Scholar 
Li, Y. et al. New P2-type honeycomb-layered sodium-ion conductor: Na2Mg2TeO6. ACS Appl. Mater. Interfaces 10, 15760–15766 (2018).Article 
CAS 
PubMed 

Google Scholar 
Deng, Z. et al. Ca-doped Na2Zn2TeO6 layered sodium conductor for all-solid-state sodium-ion batteries. Electrochim. Acta 298, 121–126 (2019).Article 
CAS 

Google Scholar 
Li, Y. et al. A P2-type layered superionic conductor Ga-doped Na2Zn2TeO6 for all-solid-state sodium-ion batteries. Chem. Eur. J. 24, 1057–1061 (2018).Article 
CAS 
PubMed 

Google Scholar 
Bera, A. K. & Yusuf, S. M. Temperature-dependent Na-ion conduction and its pathways in the crystal structure of the layered battery material Na2Ni2TeO6. J. Phys. Chem. C. 124, 4421–4429 (2020).Article 
CAS 

Google Scholar 
Sau, K. & Kumar, P. Role of ion-ion correlations on fast ion transport: molecular dynamics simulation of Na2Ni2TeO6. J. Phys. Chem. C 119, 18030–18037 (2015).Article 
CAS 

Google Scholar 
Sau, K. et al. The role of cation size in the ordered–disordered phase transition temperature and cation hopping mechanism based on LiCB11H12. Mater. Adv. 4, 2269–2280 (2023).Article 
CAS 

Google Scholar 
Sau, K. & Ikeshoji, T. Ring mechanism of fast Na+ ion transport in Na2LiFeTeO6: insight from molecular dynamics simulation. Phys. Rev. Mater. 6, 045406 (2022).Article 
CAS 

Google Scholar 
Sau, K. Influence of ion-ion correlation on Na+ transport in Na2Ni2TeO6: molecular dynamics study. Ionics 22, 2379–2385 (2016).Article 
CAS 

Google Scholar 
Burbano, M., Carlier, D., Boucher, F., Morgan, B. J. & Salanne, M. Sparse cyclic excitations explain the low ionic conductivity of stoichiometric Li7La3Zr2O12. Phys. Rev. Lett. 116, 135901 (2016).Article 
PubMed 

Google Scholar 
Fang, H. & Jena, P. Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect. Nat. Commun. 13, 2078 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanyolo, G. M. et al. Honeycomb layered oxides: structure, energy storage, transport, topology and relevant insights. Chem. Soc. Rev. 50, 3990–4030 (2021).Article 
CAS 
PubMed 

Google Scholar 
Masese, T. et al. Mixed alkali-ion transport and storage in atomic-disordered honeycomb layered NaKNi2TeO6. Nat. Commun. 12, 4660 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).Article 
CAS 

Google Scholar 
Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li-ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).Article 
CAS 
PubMed 

Google Scholar 
Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).Article 
CAS 
PubMed 

Google Scholar 
Awaka, J., Kijima, N., Hayakawa, H. & Akimoto, J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid state Chem. 182, 2046–2052 (2009).Article 
CAS 

Google Scholar 
Deng, Z., Mo, Y. & Ong, S. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries. NPG Asia Mater. 8, e254 (2016).Article 
CAS 

Google Scholar 
Adams, S. & Prasada Rao, R. Structural requirements for fast lithium ion migration in Li10GeP2S12. J. Mater. Chem. 22, 7687–7691 (2012).Article 
CAS 

Google Scholar 
Bernstein, N., Johannes, M. & Hoang, K. Origin of the structural phase transition in Li7La3Zr2O12. Phys. Rev. Lett. 109, 205702 (2012).Article 
CAS 
PubMed 

Google Scholar 
He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, Z. et al. High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction. Ceram. Int. 42, 12156–12160 (2016).Article 
CAS 

Google Scholar 
Rangasamy, E., Wolfenstine, J. & Sakamoto, J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion. 206, 28–32 (2012).Article 
CAS 

Google Scholar 
Geiger, C. A. et al. Crystal chemistry and stability of Li7La3Zr2O12 garnet: a fast lithium-ion conductor. Inorg. Chem. 50, 1089–1097 (2011).Article 
CAS 
PubMed 

Google Scholar 
Buschmann, H. et al. Structure and dynamics of the fast lithium-ion conductor Li7La3Zr2O12. Phys. Chem. Chem. Phys. 13, 19378–19392 (2011).Article 
CAS 
PubMed 

Google Scholar 
Miara, L. J. et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x−y(La3−xRbx)(Zr2−yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤y ≤ 1) superionic conductor: a first principles investigation. Chem. Mater. 25, 3048–3055 (2013).Article 
CAS 

Google Scholar 
Gu, W., Ezbiri, M., Rao, R. P., Avdeev, M. & Adams, S. Effects of penta-and trivalent dopants on structure and conductivity of Li7La3Zr2O12. Solid State Ion. 274, 100–105 (2015).Article 
CAS 

Google Scholar 
Ramakumar, S., Satyanarayana, L., Manorama, S. V. & Murugan, R. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys. Chem. Chem. Phys. 15, 11327–11338 (2013).Article 
CAS 
PubMed 

Google Scholar 
Peng, H., Wu, Q. & Xiao, L. Low temperature synthesis of Li5La3Nb2O12 with cubic garnet-type structure by sol-gel process. J. Sol. Gel Sci. Technol. 66, 175–179 (2013).Article 
CAS 

Google Scholar 
Cussen, E. J. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. Chem. Commun. 4, 412–413 (2006).Article 

Google Scholar 
Kvist, A., Bengtzelius, A. & Gool, W.V. Fast ion transport in solids. Solid State Batteries and Devices 193 (1973).Bron, P. et al. Li10SnP2S12: An affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kuhn, A. et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z., Roy, P.-N., Li, H., Avdeev, M. & Nazar, L. Coupled cation-anion dynamics enhances cation mobility in room-temperature superionic solid-state electrolytes. J. Am. Chem. Soc. 141, 19360–19372 (2019).Article 
CAS 
PubMed 

Google Scholar 
Hong, H.-P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 13, 117–124 (1978).Article 
CAS 

Google Scholar 
Kuwano, J. & West, A. New Li+ ion conductors in the system, Li4GeO4-Li3VO4. Mater. Res. Bull. 15, 1661–1667 (1980).Article 
CAS 

Google Scholar 
Bruce, P. & West, A. The A-C conductivity of polycrystalline LISICON, Li2+2xZn1−xGeO4, and a model for intergranular constriction resistances. J. Electrochem. Soc. 130, 662–669 (1983).Article 
CAS 

Google Scholar 
Kuwata, N., Kawamura, J., Toribami, K., Hattori, T. & Sata, N. Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition. Electrochem. Commun. 6, 417–421 (2004).Article 
CAS 

Google Scholar 
Deng, Y. et al. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4-Li3PO4 solid electrolytes. J. Am. Chem. Soc. 137, 9136–9145 (2015).Article 
CAS 
PubMed 

Google Scholar 
Kumar, P. P. & Yashonath, S. Ionic conduction in the solid state. J. Chem. Sci. 118, 135–154 (2006).Article 
CAS 

Google Scholar 
Arbi, K., Bucheli, W., Jimenez, R. & Sanz, J. High lithium-ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 35, 1477–1484 (2015).Article 
CAS 

Google Scholar 
Anantharamulu, N. et al. A wide-ranging review on nasicon type materials. J. Mater. Sci. 46, 2821–2837 (2011).Article 
CAS 

Google Scholar 
Kumar, P. P. & Yashonath, S. A full interionic potential for Na1+xZr2SixP3−xO12 superionic conductors. J. Am. Chem. Soc. 124, 3828–3829 (2002).Article 
CAS 
PubMed 

Google Scholar 
Padma Kumar, P. & Yashonath, S. Ion mobility and levitation effect: anomalous diffusion in nasicon-type structure. J. Phys. Chem. B 106, 3443–3448 (2002).Article 

Google Scholar 
Nuspl, G. et al. Lithium ion migration pathways in LiTi2(PO4)3 and related materials. J. Appl. Phys. 86, 5484–5491 (1999).Article 
CAS 

Google Scholar 
Martinez-Juarez, A., Pecharromán, C., Iglesias, J. E. & Rojo, J. M. Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition Li\(M{M}^{{\prime} }\)(PO4)3; \(M{M}^{{\prime} }\) = Ge, Ti, Sn, Hf. J. Phys. Chem. B 102, 372–375 (1998).Article 
CAS 

Google Scholar 
Alami, M. et al. Structure and thermal expansion of LiGe2(PO4)3. J. Solid State Chem. 90, 185–193 (1991).Article 
CAS 

Google Scholar 
Lang, B., Ziebarth, B. & Elsa Aàsser, C. Lithium ion conduction in LiTi2(PO4)3 and related compounds based on the NASICON structure: a first-principles study. Chem. Mater. 27, 5040–5048 (2015).Article 
CAS 

Google Scholar 
Pramanik, K., Sau, K. & Kumar, P. Role of framework flexibility in ion transport: a molecular dynamics study of Li\({{M}_{2}}^{IV}\)(PO4)3. J. Phys. Chem. C 124, 4001–4009 (2020).Article 
CAS 

Google Scholar 
Arbi, K., Hoelzel, M., Kuhn, A., García-Alvarado, F. & Sanz, J. Structural factors that enhance lithium mobility in fast-ion Li1+xTi2−xAlx(PO4)3 (0 ≤x≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100–500 K. Inorg. Chem. 52, 9290–9296 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kahlaoui, R. et al. Synthesis, structural characterization and ionic conductivity of NASICON-type Bax/2Li1−xTi2(PO4)3 (0.4 ≤x≤ 1) materials. Ionics 23, 837–846 (2017).Article 
CAS 

Google Scholar 
Sau, K., Ikeshoji, T. & Roy, S. Role of divalent cation (Ba) substitution in the Li+ ion conductor LiTi2(PO4)3: a molecular dynamics study. Phys. Chem. Chem. Phys. 22, 14471–14479 (2020).Article 
CAS 
PubMed 

Google Scholar 
Duan, S. et al. Competition between activation energy and migration entropy in lithium-ion conduction in superionic NASICON-type Li1−3xGaxZr2(PO4)3. J. Mater. Chem. A 9, 7817–7825 (2021).Article 
CAS 

Google Scholar 
Xiao, Y. et al. Lithium oxide superionic conductors inspired by garnet and NASICON structures. Adv. Energy Mater. 11, 2101437 (2021).Article 
CAS 

Google Scholar 
Kohler, H. & Schulz, H. NASICON solid electrolytes part I: the Na+-diffusion path and its relation to the structure. Mater. Res. Bull. 20, 1461–1471 (1985).Article 
CAS 

Google Scholar 
Kang, K., Meng, Y., Bréger, J., Grey, C. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).Article 
CAS 
PubMed 

Google Scholar 
Padma Kumar, P. & Yashonath, S. Structure, conductivity, and ionic motion in Na1+xZr2SixP3−xO12: a simulation study. J. Phys. Chem. B 106, 7081–7089 (2002).Article 

Google Scholar 
Phani Dathar, G., Balachandran, J., Kent, P., Rondinone, A. & Ganesh, P. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li3PS4. J. Mater. Chem. A 5, 1153–1159 (2017).Article 
CAS 

Google Scholar 
Qui, D. T., Capponi, J., Joubert, J. & Shannon, R. Crystal structure and ionic conductivity in Na4Zr2Si3O12. J. Solid State Chem. 39, 219–229 (1981).Article 
CAS 

Google Scholar 
Roy, S. & Kumar, P. P. Influence of Si/P ordering on Na+ transport in NASICONs. Phys. Chem. Chem. Phys. 15, 4965–4969 (2013).Article 
CAS 
PubMed 

Google Scholar 
Roy, S. & Kumar, P. P. Influence of cationic ordering on ion transport in NASICONs: molecular dynamics study. Solid State Ion. 253, 217–222 (2013).Article 
CAS 

Google Scholar 
Zhang, Z. et al. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes. Adv. Energy Mater. 9, 1902373 (2019).Article 
CAS 

Google Scholar 
Mouahid, F. et al. Na–Li exchange of Na1+xTi2−xAlx(PO4)3 (0.6 ≤x≤ 0.9) NASICON series: a Rietveld and impedance study. J. Mater. Chem. 11, 3258–3263 (2001).Article 
CAS 

Google Scholar 
Kim, J., Kim, J., Avdeev, M., Yun, H. & Kim, S.-J. LiTa2PO8: a fast lithium-ion conductor with new framework structure. J. Mater. Chem. A 6, 22478–22482 (2018).Article 
CAS 

Google Scholar 
Wang, Q. et al. A new lithium-ion conductor LiTaSiO5: theoretical prediction, materials synthesis, and ionic conductivity. Adv. Funct. Mater. 29, 1904232 (2019).Article 

Google Scholar 
Mohtadi, R. & Orimo, S.-I. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2, 1–15 (2016).Article 

Google Scholar 
Nakamori, Y., Orimo, S.-I. & Tsutaoka, T. Dehydriding reaction of metal hydrides and alkali borohydrides enhanced by microwave irradiation. Appl. Phys. Lett. 88, 112104 (2006).Article 

Google Scholar 
Matsuo, M., Nakamori, Y., Orimo, S., Maekawa, H. and Takamura, H. Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl. Phys. Lett. 91 224103 (2007).Matsuo, M. & Orimo, S. Lithium fast-ionic conduction in complex hydrides: review and prospects. Adv. Energy Mater. 1, 161–172 (2011).Article 
CAS 

Google Scholar 
Unemoto, A. et al. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Appl. Phys. Lett. 105, 083901 (2014).Soulié, J.-P., Renaudin, G., Černy`, R. & Yvon, K. Lithium boro-hydride LiBH4: I. Crystal structure. J. Alloy. Compd. 346, 200–205 (2002).Article 

Google Scholar 
Verdal, N., Udovic, T. J. & Rush, J. J. The nature of BH4–reorientations in hexagonal LiBH4. J. Phys. Chem. C 116, 1614–1618 (2012).Article 
CAS 

Google Scholar 
Remhof, A. et al. Rotational disorder in lithium borohydride. EPJ Web Conf. 83, 02014 (2015).Article 

Google Scholar 
Aeberhard, P. C., Refson, K. & David, W. I. Molecular dynamics investigation of the disordered crystal structure of hexagonal LiBH4. Phys. Chem. Chem. Phys. 15, 8081–8087 (2013).Article 
CAS 
PubMed 

Google Scholar 
Yan, Y. et al. Ammonia-assisted fast Li-ion conductivity in a new hemiammine lithium borohydride, LiBH4⋅ 1/2NH3. Chem. Commun. 56, 3971–3974 (2020).Article 
CAS 

Google Scholar 
Udovic, T. J. et al. Sodium superionic conduction in Na2B12H12. Chem. Commun. 50, 3750–3752 (2014).Article 
CAS 

Google Scholar 
Udovic, T. et al. Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater. 26, 7622–7626 (2014).Article 
CAS 
PubMed 

Google Scholar 
Tang, W. et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ. Sci. 8, 3637–3645 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sadikin, Y. et al. Alkali metal–yttrium borohydrides: the link between coordination of small and large rare-earth. J. Solid State Chem. 225, 231–239 (2015).Article 
CAS 

Google Scholar 
Teprovich, J. et al. Bi-functional Li2B12H12 for energy storage and conversion applications: Solid-state electrolyte and luminescent down-conversion dye. J. Mater. Chem. A 3, 22853–22859 (2015).Article 
CAS 

Google Scholar 
Verdal, N. et al. Complex high-temperature phase transitions in Li2B12H12 and Na2B12H12. J. Solid State Chem. 212, 81–91 (2014).Article 
CAS 

Google Scholar 
Udovic, T. et al. Sodium superionic conduction in Na2B12H12. Chem. Commun. 50, 3750–3752 (2014).Article 
CAS 

Google Scholar 
Verdal, N. et al. Anion reorientations in the superionic conducting phase of Na2B12H12. J. Phys. Chem. C. 118, 17483–17489 (2014).Article 
CAS 

Google Scholar 
Skripov, A. V. et al. Nuclear magnetic resonance study of atomic motion in A2B12H12 (A= Na, K, Rb, Cs): anion reorientations and Na+ mobility. J. Phys. Chem. C. 117, 25961–25968 (2013).Article 
CAS 

Google Scholar 
Kweon, K. et al. Structural, chemical, and dynamical frustration: origins of superionic conductivity in closo-borate solid electrolytes. Chem. Mater. 29, 9142–9153 (2017).Article 
CAS 

Google Scholar 
Sau, K. et al. Reorientational motion and Li+-ion transport in Li2B12H12 system: molecular dynamics study. Phys. Rev. Mater. 3, 075402 (2019).Article 
CAS 

Google Scholar 
Sau, K., Ikeshoji, T., Kim, S., Takagi, S. & Orimo, S. I. Comparative molecular dynamics study of the roles of anion-cation and cation-cation correlation in cation diffusion in Li2B12H12 and LiCB11H12. Chem. Mater. 33, 2357–2369 (2021).Article 
CAS 

Google Scholar 
Tang, W. et al. Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature, Adv. Energy Mater. 6 (2016).Kim, S. et al. Fast lithium-ion conduction in atom-deficient closo-type complex hydride solid electrolytes. Chem. Mater. 30, 386–391 (2018).Article 
CAS 

Google Scholar 
Kim, S. et al. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat. Commun. 10, 1081 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Brighi, M., Murgia, F., Łodziana, Z. & Černy`, R. Structural phase transitions in closo-dicarbadodecaboranes C2B10H12. Inorg. Chem. 61, 5813–5823 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, L., Minafra, N., Zeier, W. G. & Nazar, L. F. Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc. Chem. Res. 54, 2717–2728 (2021).Article 
CAS 
PubMed 

Google Scholar 
Deiseroth, H.-J. et al. Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible three-dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements, (2011).Rao, R. & Adams, S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi (A) Appl. Mater. Sci. 208, 1804–1807 (2011).Article 
CAS 

Google Scholar 
Boulineau, S., Courty, M., Tarascon, J.-M. & Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion. 221, 1–5 (2012).Article 
CAS 

Google Scholar 
Pecher, O. et al. Atomistic characterisation of Li+ mobility and conductivity in Li7−xPS6−xIx argyrodites from molecular dynamics simulations, solid-state NMR, and impedance spectroscopy. Chem. Eur. J. 16, 8347–8354 (2010).Article 
CAS 
PubMed 

Google Scholar 
Epp, V., Guun, O., Deiseroth, H.-J. & Wilkening, M. Highly mobile ions: low-temperature NMR directly probes extremely fast Li+ hopping in argyrodite-type Li6PS5Br. J. Phys. Chem. Lett. 4, 2118–2123 (2013).Article 
CAS 

Google Scholar 
Chen, M., Rao, R. P. & Adams, S. High capacity all-solid-state Cu–Li2S/Li6PS5Br/In batteries. Solid State Ion. 262, 183–187 (2014).Article 
CAS 

Google Scholar 
Rao, R. P., Sharma, N., Peterson, V. & Adams, S. Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction. Solid State Ion. 230, 72–76 (2013).Article 
CAS 

Google Scholar 
Zhou, L., Zhang, Q. & Nazar, L. F. Li-rich and halide-deficient argyrodite fast ion conductors. Chem. Mater. 34, 9634–9643 (2022).Article 
CAS 

Google Scholar 
Yu, C. et al. Unravelling li-ion transport from picoseconds to seconds: bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-ion battery. J. Am. Chem. Soc. 138, 11192–11201 (2016).Article 
CAS 
PubMed 

Google Scholar 
Hanghofer, I., Gadermaier, B. & Wilkening, H. M. R. Fast rotational dynamics in argyrodite-type Li6PS5X (X: Cl, Br, I) as seen by 31P nuclear magnetic relaxation -On cation-anion coupled transport in thiophosphates. Chem. Mater. 31, 4591–4597 (2019).Article 
CAS 

Google Scholar 
Zhang, Z. et al. Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite. J. Power Sources 450, 227601 (2020).Article 
CAS 

Google Scholar 
Xuan, M. et al. Ultrafast solid-state lithium ion conductor through alloying induced lattice softening of Li6PS5Cl. J. Mater. Chem. A 6, 19231–19240 (2018).Article 
CAS 

Google Scholar 
Choi, Y. J., Kim, S.-I., Son, M., Lee, J. W. & Lee, D. H. Cl-and Al-doped argyrodite solid electrolyte Li6PS5Cl for all-solid-state lithium batteries with improved ionic conductivity. Nanomaterials 12, 4355 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, Y. et al. Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state li-ion batteries. ACS Energy Lett. 7, 171–179 (2021).Article 

Google Scholar 
Wang, H. et al. Borohydride substitution effects of Li6PS5Cl solid electrolyte. ACS Appl. Energy Mater. 4, 12079–12083 (2021).Article 
CAS 

Google Scholar 
Han, J.-H. et al. Borohydride and halide dual-substituted lithium argyrodites. Mater. Horiz. 11, 251–261 (2024).Article 
CAS 
PubMed 

Google Scholar 
Fuchs, T., Culver, S. P., Till, P. & Zeier, W. G. Defect-mediated conductivity enhancements in Na3−xPn1−xWxS4 (Pn = P, Sb) using aliovalent substitutions. ACS Energy Lett. 5, 146–151 (2019).Article 

Google Scholar 
Zhu, B., Mellander, B.-E. & Chen, J. Cubic alkali orthophosphates with high ionic conductivity. Mater. Res. Bull. 28, 321–328 (1993).Article 
CAS 

Google Scholar 
Zhang, L. et al. Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity. Adv. Energy Mater. 5, 1501294 (2015).Article 

Google Scholar 
Bo, S.-H., Wang, Y., Kim, J. C., Richards, W. D. & Ceder, G. Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4. Chem. Mater. 28, 252–258 (2016).Article 
CAS 

Google Scholar 
Famprikis, T. et al. A new superionic plastic polymorph of the Na+ conductor Na3PS4. ACS Mater. Lett. 1, 641–646 (2019).Article 
CAS 

Google Scholar 
Sau, K. & Ikeshoji, T. Origin of fast ion conduction in Na3PS4: insight from molecular dynamics study. J. Phys. Chem. C 124, 20671–20681 (2020).Article 
CAS 

Google Scholar 
Tanibata, N., Noi, K., Hayashi, A. & Tatsumisago, M. Preparation and characterization of highly sodium ion conducting Na3PS4-Na4SiS4 solid electrolytes. RSC Adv. 4, 17120–17123 (2014).Article 
CAS 

Google Scholar 
Tanibata, N., Hayashi, A. & Tatsumisago, M. Improvement of rate performance for all-solid-state Na15Sn4/amorphous TiS3 cells using 94Na3PS4⋅ 6Na4SiS4 glass-ceramic electrolytes. J. Electrochem. Soc. 162, A793 (2015).Article 
CAS 

Google Scholar 
Maus, O. et al. On the discrepancy between local and average structure in the Fast Na+ ionic conductor Na2.9Sb0.9W0.1S4. J. Am. Chem. Soc. 145, 7147–7158 (2023).Article 
CAS 
PubMed 

Google Scholar 
Takagi, S., Ikeshoji, T., Sato, T. & Orimo, S.-I. Pseudorotating hydride complexes with high hydrogen coordination: a class of rotatable polyanions in solid matter. Appl. Phys. Lett. 116, 173901 (2020).Article 
CAS 

Google Scholar 
Ohmasa, Y. et al. Rotation of complex ions with ninefold hydrogen coordination studied by quasielastic neutron scattering and first-principles molecular dynamics calculations. Phys. Rev. Res. 4, 033215 (2022).Article 
CAS 

Google Scholar 
Takagi, S. et al. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination. Sci. Rep. 7, 44253 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Ohno, S. et al. Materials design of ionic conductors for solid-state batteries. Prog. Energy 2, 022001 (2020).Article 

Google Scholar 
Armstrong, R., Bulmer, R. & Dickinson, T. Some factors responsible for high ionic conductivity in simple solid compounds. J. Solid State Chem. 8, 219–228 (1973).Article 
CAS 

Google Scholar 
Zou, Z. et al. Identifying migration channels and bottlenecks in monoclinic NASICON-type solid electrolytes with hierarchical ion-transport algorithms. Adv. Funct. Mater. 31, 2107747 (2021).Article 
CAS 

Google Scholar 
Zou, Z. et al. Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON. Adv. Energy Mater. 10, 2001486 (2020).Article 
CAS 

Google Scholar 
Xu, M., Ding, J. & Ma, E. One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor. Appl. Phys. Lett. 101, 031901 (2012).Article 

Google Scholar 
Smith, J. G. & Siegel, D. J. Low-temperature paddlewheel effect in glassy solid electrolytes. Nat. Commun. 11, 1483 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Z. et al. Targeting superionic conductivity by turning on anion rotation at room temperature in fast ion conductors. Matter 2, 1667–1684 (2020).Article 

Google Scholar 
Fang, H. & Jena, P. Li-rich antiperovskite superionic conductors based on cluster ions. Proc. Natl Acad. Sci. 114, 11046–11051 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kozinsky, B. Handbook of Materials Modeling: Applications: Current and Emerging Materials (Springer Cham, 2018).Tang, W. et al. Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures. Energy Storage Mater. 4, 79–83 (2016).Article 

Google Scholar 
Kozinsky, B. Transport in frustrated and disordered solid electrolytes. In (eds Andreoni, W., Yip, S.) Handbook of Materials Modeling: Applications: Current and Emerging Materials 1255–1274 (Springer Cham, 2020).Zhao, Q., Pan, L., Li, Y.-J., Chen, L.-Q. & Shi, S.-Q. Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes. Rare Met. 37, 497–503 (2018).Article 
CAS 

Google Scholar 
Sun, Y. et al. Enhanced ionic conductivity and lack of paddle-wheel effect in pseudohalogen-substituted Li argyrodites. Matter 5, 4379–4395 (2022).Article 
CAS 

Google Scholar 
Brenner, T. M. et al. Anharmonic host-lattice dynamics enable fast ion conduction in superionic AgI. Phys. Rev. Mater. 4, 115402 (2020).Article 
CAS 

Google Scholar 
Niedziela, J. L. et al. Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2. Nat. Phys. 15, 73–78 (2019).Article 
CAS 

Google Scholar 
Xu, Z., Chen, X., Zhu, H. & Li, X. Anharmonic cation–anion coupling dynamics assisted lithium-ion diffusion in sulfide solid electrolytes. Adv. Mater. 34, 2207411 (2022).Article 
CAS 

Google Scholar 
Hull, S. Superionics: crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233 (2004).Article 
CAS 

Google Scholar 
Malik, R., Burch, D., Bazant, M. & Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010).Article 
CAS 
PubMed 

Google Scholar 
Ohno, S. et al. How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study. ACS Energy Lett. 5, 910–915 (2020).Article 
CAS 

Google Scholar 
Till, P. et al. Two-dimensional substitution series Na3P1−xSbxS4−ySey: beyond static description of structural bottlenecks for Na+ transport. Chem. Mater. 34, 2410–2421 (2022).Article 
CAS 

Google Scholar 
Hanghofer, I., Gadermaier, B. & Wilkening, H. Fast rotational dynamics in argyrodite-type Li6PS5X (X: Cl, Br, I) as seen by 31P nuclear magnetic relaxation—on cation-anion coupled transport in thiophosphates. Chem. Mater. 31, 4591–4597 (2019).Article 
CAS 

Google Scholar 
Kozinsky, B. et al. Effects of sublattice symmetry and frustration on ionic transport in garnet solid electrolytes. Phys. Rev. Lett. 116, 055901 (2016).Article 
PubMed 

Google Scholar 
Kraft, M. et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1−xGexS5I for all-solid-state batteries. J. Am. Chem. Soc. 140, 16330–16339 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ohno, S. et al. Further evidence for energy landscape flattening in the superionic argyrodites Li6+xP1−xMxS5I (M = Si, Ge, Sn). Chem. Mater. 31, 4936–4944 (2019).Article 
CAS 

Google Scholar 
Zhu, Z., Chu, I.-H., Deng, Z. & Ong, S. P. Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor. Chem. Mater. 27, 8318–8325 (2015).Article 
CAS 

Google Scholar 
Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 58, 8681–8686 (2019).Article 
CAS 

Google Scholar 
Duchardt, M., Ruschewitz, U., Adams, S., Dehnen, S. & Roling, B. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12. Angew. Chem. Int. Ed. 57, 1351–1355 (2018).Article 
CAS 

Google Scholar 
Wagner, V. et al. Lattice dynamics and bond polarity of be-chalcogenides a new class of II–VI materials. Phys. Status Solidi (B) 215, 87–91 (1999).Article 
CAS 

Google Scholar 
Krauskopf, T., Culver, S. P. & Zeier, W. G. Bottleneck of diffusion and inductive effects in Li10Ge1−xSnxP2S12. Chem. Mater. 30, 1791–1798 (2018).Article 
CAS 

Google Scholar 
Kraft, M. et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017).Article 
CAS 
PubMed 

Google Scholar 
Schlem, R., Ghidiu, M., Culver, S. P., Hansen, A.-L. & Zeier, W. G. Changing the static and dynamic lattice effects for the improvement of the ionic transport properties within the argyrodite Li6PS5−xSexI. ACS Appl. Energy Mater. 3, 9–18 (2019).Article 

Google Scholar 
Schlem, R. et al. Ionic conductivity of the NASICON-related thiophosphate Na1+xTi2−xGax(PS4)3. Chem. Eur. J. 25, 4143–4148 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S GeS2 P2S5 system. J. Electrochem. Soc. 148, A742 (2001).Article 
CAS 

Google Scholar 
He, X. et al. Crystal structural framework of lithium super-ionic conductors. Adv. Energy Mater. 9, 1902078 (2019).Article 
CAS 

Google Scholar 
Rao, R. P. & Adams, S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. status solidi (a) 208, 1804–1807 (2011).Article 
CAS 

Google Scholar 
Jun, K. et al. Lithium superionic conductors with corner-sharing frameworks. Nat. Mater. 21, 924–931 (2022).Article 
CAS 
PubMed 

Google Scholar 
Mizuno, F., Mohtadi, R., Tutusaus, O., Fichtner, M. and Zhao-Karger, Z. Solid-phase magnesium boranyl electrolytes for a magnesium battery, US Patent 9,716,289 (2017).Campos dos Santos, E. et al. Explore the ionic conductivity trends on B12H12 divalent closo-type complex hydride electrolytes. Chem. Mater. 35, 5996–6004 (2023).Article 
CAS 

Google Scholar 
Joos, M. et al. Impact of hydration on ion transport in Li2Sn2S5⋅ xH2O. J. Mater. Chem. A 9, 16532–16544 (2021).Article 
CAS 

Google Scholar 
Wood, B. C. et al. Paradigms of frustration in superionic solid electrolytes. Philos. Trans. R. Soc. A 379, 20190467 (2021).Article 
CAS 

Google Scholar 
Morgan, B. J. Understanding fast-ion conduction in solid electrolytes. Philos. Trans. R. Soc. A 379, 20190451 (2021).Article 
CAS 

Google Scholar 
Yang, F. et al. A dynamic database of solid-state electrolyte (DDSE) picturing all-solid-state batteries. Nano Mater. Sci. 6, 256–262 (2024).Article 
CAS 

Google Scholar 
Mulmi, S. and Thangadurai, V. Solid-state electrolytes: structural approach. Solid Electrolytes for Advanced Applications: Garnets and Competitors 3–24 (Springer, 2019).Nalbandyan, V., Petrenko, A. A. & Evstigneeva, M. Heterovalent substitutions in Na2M2TeO6 family: crystal structure, fast sodium ion conduction and phase transition of Na2LiFeTeO6. Solid State Ion. 233, 7–11 (2013).Article 
CAS 

Google Scholar 
Li, Y., Han, J.-T., Wang, C.-A., Xie, H. & Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012).Article 
CAS 

Google Scholar 
Li, Y., Wang, C.-A., Xie, H., Cheng, J. & Goodenough, J. B. High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochem. Commun. 13, 1289–1292 (2011).Article 
CAS 

Google Scholar 
Jalem, R., Chandrappa, M. L. H., Qi, J., Tateyama, Y. & Ong, S. P. Lithium dynamics at grain boundaries of β-Li3PS4 solid electrolyte. Energy Adv. 2, 2029–2041 (2023).Article 
CAS 

Google Scholar 
Kim, S., Kisu, K., Takagi, S., Oguchi, H. & Orimo, S. Complex hydride solid electrolytes of the Li(CB9H10)-Li(CB11H12) quasi-binary system: relationship between the solid solution and phase transition, and the electrochemical properties. ACS Appl. Energy Mater. 3, 4831–4839 (2020).Article 
CAS 

Google Scholar 
Muy, S., Schlem, R., Shao-Horn, Y. & Zeier, W. G. Phonon–ion interactions: designing ion mobility based on lattice dynamics. Adv. Energy Mater. 11, 2002787 (2021).Article 
CAS 

Google Scholar 
Takagi, S., Ikeshoji, T., Sato, T. & Orimo, S. Pseudorotating hydride complexes with high hydrogen coordination: a class of rotatable polyanions in solid matter. Appl. Phys. Lett. 116, 173901 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles