Influence of environmental, geographic, socio-demographic, and epidemiological factors on presence of malaria at the community level in two continents

World Health Organization. World malaria report 2023. WHO Geneva. Technical report at https://www.who.int/publications/i/item/9789240086173 (2023).World Health Organization. World malaria report 2019. WHO Geneva. Technical report at https://www.who.int/publications/i/item/world-malaria-report-2019 (2019).James, S. L. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392, 1789–1858 (2018).
Google Scholar 
World Health Organization. World malaria report 2022. WHO Geneva. Technical report at https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (2022).Campbell-Lendrum, D., Manga, L., Bagayoko, M. & Sommerfeld, J. Climate change and vector-borne diseases: what are the implications for public health research and policy?. Philosoph. Transact. Royal Soc. B 370, 20130552 (2015).
Google Scholar 
Parham, P. E. et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosoph. Transact. Royal Soc. B 370, 20130551. https://doi.org/10.1098/rstb.2013.0551 (2015).Article 

Google Scholar 
Caminade, C., McIntyre, K. M. & Jones, A. E. Impact of recent and future climate change on vector-borne diseases. Ann. New York Acad. Sci. 1436, 157 (2019).ADS 

Google Scholar 
Koenraadt, C., Githeko, A. & Takken, W. The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae ss and Anopheles arabiensis in a Kenyan village. Acta Trop. 90, 141–153 (2004).CAS 
PubMed 

Google Scholar 
Ikeda, T. et al. Seasonally lagged effects of climatic factors on malaria incidence in South Africa. Sci. Rep. 7, 1–9 (2017).
Google Scholar 
Lowe, R., Chirombo, J. & Tompkins, A. M. Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar. J. 12, 1–16 (2013).
Google Scholar 
Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).PubMed 

Google Scholar 
Cox, F. E. History of the discovery of the malaria parasites and their vectors. Parasit. Vectors 3, 1–9 (2010).
Google Scholar 
Johnson, L. R. et al. Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach. Ecology. 96, 203–213 (2015).ADS 
PubMed 

Google Scholar 
Mordecai, E. A. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).PubMed 
PubMed Central 

Google Scholar 
Villena, O. C., Ryan, S. J., Murdock, C. C. & Johnson, L. R. Temperature impacts the environmental suitability for malaria transmission by Anopheles gambiae and Anopheles stephensi. Ecology 103, e3685. https://doi.org/10.1002/ecy.3685 (2022).Article 
PubMed 

Google Scholar 
Ryan, S. J. et al. Mapping current and future thermal limits to suitability for malaria transmission by the invasive mosquito Anopheles stephensi. Malaria J. 22, 104. https://doi.org/10.1186/s12936-023-04531-4 (2023).Article 

Google Scholar 
Galardo, A. K. et al. Seasonal abundance of anopheline mosquitoes and their association with rainfall and malaria along the Matapi river, Amapi. Brazil. Med. Veterinary Entomol. 23, 335–349 (2009).CAS 

Google Scholar 
Okuneye, K. & Gumel, A. B. Analysis of a temperature and rainfall dependent model for malaria transmission dynamics. Math. Biosci. 287, 72–92 (2017).MathSciNet 
PubMed 

Google Scholar 
Smith, M., Macklin, M. G. & Thomas, C. J. Hydrological and geomorphological controls of malaria transmission. Earth-Sci. Rev. 116, 109–127 (2013).ADS 

Google Scholar 
Kabaria, C. W., Gilbert, M., Noor, A. M., Snow, R. W. & Linard, C. The impact of urbanization and population density on childhood Plasmodium falciparum parasite prevalence rates in Africa. Malaria J. 16, 1–10 (2017).
Google Scholar 
Kumar, D. S., Andimuthu, R., Rajan, R. & Venkatesan, M. S. Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai. Malaria J. 13, 1–9 (2014).
Google Scholar 
Geissbühler, Y. et al. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania. Malaria J. 6, 126. https://doi.org/10.1186/1475-2875-6-126 (2007).Article 

Google Scholar 
Machault, V. et al. Spatial heterogeneity and temporal evolution of malaria transmission risk in Dakar, Senegal, according to remotely sensed environmental data. Malaria J. 9, 1–14 (2010).
Google Scholar 
Sinka, M. E. et al. A global map of dominant malaria vectors. Parasites Vectors. 5, 69. https://doi.org/10.1186/1756-3305-5-69 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Sinka, M. E. et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc. Natl. Acad. Sci. 117, 24900–24908 (2020).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Takken, W. & Lindsay, S. Increased threat of urban malaria from anopheles stephensi mosquitoes, Africa. Emerg. Infect. Dis. 25, 1431 (2019).PubMed 
PubMed Central 

Google Scholar 
Ngarakana-Gwasira, E. T., Bhunu, C. P., Masocha, M. & Mashonjowa, E. Assessing the role of climate change in malaria transmission in Africa. Malaria Res. Treat. https://doi.org/10.1155/2016/7104291 (2016).Article 

Google Scholar 
Murdock, C. C., Sternberg, E. D. & Thomas, M. B. Malaria transmission potential could be reduced with current and future climate change. Sci. Rep. 6, 27771. https://doi.org/10.1038/srep27771 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, J. E., Choi, Y. & Lee, C. H. Effects of climate change on Plasmodium vivax malaria transmission dynamics: a mathematical modeling approach. Appl. Math. Comput. 347, 616–630 (2019).MathSciNet 

Google Scholar 
Orem, J. N., Kirigia, J. M., Azairwe, R., Kasirye, I. & Walker, O. Impact of malaria morbidity on gross domestic product in Uganda. Int. Arch. Med. 5, 1–8 (2012).
Google Scholar 
Tusting, L. S. et al. Why is malaria associated with poverty? Findings from a cohort study in rural Uganda. Infect. Dis. Poverty 5, 1–11 (2016).
Google Scholar 
Bruce-Chwatt, L. J. & De Zulueta, J. The rise and fall of malaria in Europe: a historico-epidemiological study (Oxford University Press, 1980).Newby, G. et al. The path to eradication: a progress report on the malaria-eliminating countries. Lancet 387, 1775–1784 (2016).PubMed 

Google Scholar 
Mabaso, M. L., Zama, T. P., Mlangeni, L., Mbiza, S. & Mkhize-Kwitshana, Z. L. Association between the human development index and millennium development goals 6 indicators in sub-Saharan Africa from 2000 to 2014: Implications for the new sustainable development goals. J. Epidemiol. Global Health 8(1), 77–81 (2018).CAS 

Google Scholar 
Dantur Juri, M. J. et al. Satellite-derived NDVI, LST, and climatic factors driving the distribution and abundance of Anopheles mosquitoes in a former malarious area in northwest Argentina. J. Vector Ecol. 40(1), 36–45 (2015).PubMed 

Google Scholar 
Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 1–9 (2016).MathSciNet 

Google Scholar 
Haque, U. et al. The role of climate variability in the spread of malaria in Bangladeshi highlands. PloS ONE 5, e14341 (2010).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pfeffer, D. A. et al. malariaAtlas: an R interface to global malariometric data hosted by the Malaria Atlas Project. Malaria J. 17, 352. https://doi.org/10.1186/s12936-018-2500-5 (2018).Article 

Google Scholar 
Snow, R. W. et al. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 550, 515–518 (2017).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fick, S. E. & Hijmans, R. J. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar 
O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological appli- cations in the conterminous united states. US Geol. Surv. Data Series 69, 4–9 (2012).
Google Scholar 
Sodnomov, B. V., Ayurzhanaev, A. A., Tsydypov, B. Z. & Garmaev, E. Z. Algorithm of assessment of the MODIS NDVI long-term variations. Eng. Technol. 11, 61–68 (2018).
Google Scholar 
Ivanova, Y., Kovalev, A., Yakubailik, O. & Soukhovolsky, V. The use of satellite information (MODIS/Aqua) for phenological and classification analysis of plant communities. Forests 10, 561 (2019).
Google Scholar 
Ozturk, D. & Kilic, F. Geostatistical approach for spatial interpolation of meteorological data. Anais da Acad. Brasileira de Ciencias 88, 2121–2136 (2016).
Google Scholar 
Balk, D. L. et al. Determining global population distribution: methods, applications and data. Adv. Parasitol. 62, 119–156 (2006).CAS 
PubMed 
PubMed Central 

Google Scholar 
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2021).Kummu, M., Taka, M. & Guillaume, J. H. Gridded global datasets for gross domestic product and human development index over 1990–2015. Sci. Data 5, 1–15 (2018).
Google Scholar 
Huong, N. T., Minh, N. Q. & Hien, L. P. Comparison of the resampling methods for gridded dem downscaling. J. Mining Earth Sci. 60, 64–82 (2019).
Google Scholar 
Johnson, J. M. & Clarke, K. C. An area preserving method for improved categorical raster resampling. Cartogr. Geograph. Inform. Sci. 48(292–304), 2021. https://doi.org/10.1080/15230406.2021.1892531 (2021).Article 

Google Scholar 
Scott, L. M. & Janikas, M. V. Spatial statistics in ArcGIS (ed. Fischer, M. & Getis, A.) 27–41. https://doi.org/10.1007/978-3-642-03647-7_2 (Springer, 2010).Han, D. Comparison of commonly used image interpolation methods. In: Proceedings of the 2nd international conference on computer science and electronics engineering. 1556–1559. file:///C:/Users/oswal/Downloads/4822%20(1).pdf (Atlantis Press, 2013).Dietz, K. The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 2, 23–41 (1993).CAS 
PubMed 

Google Scholar 
Mordecai, E. A. et al. Detecting the impact of temperature on transmission of zika, dengue, and chikungunya using mechanistic models. PLoS Neglect. Trop. Dis. 11, e0005568 (2017).
Google Scholar 
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. Classification and Regression Trees. https://doi.org/10.1201/9781315139470 (Chapman and Hall/CRC, 1984).Dobson, A. J. & Barnett, A. G. An introduction to generalized linear models (Chapman and Hall/CRC, 2018).Dunn, P. K., Smyth, G. K., et al. Generalized linear models with examples in R (Springer, 2018).Yi, L., Li, J., Lou, X. & Hao, J. Totally data-driven duration modeling based on generalized linear model for Mandarin TTS. Ninth Int. Conf. Spoken Lang. Process. https://doi.org/10.21437/Interspeech.2006-595 (2006).Article 

Google Scholar 
Krzywinski, M. & Altman, N. Classification and regression trees. Nat. Methods 14, 757–758 (2017).CAS 

Google Scholar 
Thernau, T., Atkinson, B., & Ripley, B. Package ’rpart’. R package version 4.1.19. https://cran.r-project.org/web/packages/rpart/index.html (2022).Therneau, T. M & Atkinson, E.J. An introduction to recursive partitioning using the RPART routines. Mayo Foundation. https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf (2000).Giner, G. & Smyth, G. K. statmod: probability calculations for the inverse Gaussian distribution. R J. 8, 339–351 (2016).
Google Scholar 
Dunn, P. K. & Smyth, G. K. Randomized quantile residuals. J. Comput. Graph. Stat. 5, 236–244 (1996).
Google Scholar 
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
Google Scholar 
Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol. Evolut. 10, 565–577 (2019).
Google Scholar 
Villena, O. C. et al. Environmental and geographical factors influence the occurrence and abundance of the southern house mosquito, Culex quinquefasciatus, in Hawai‘i. Sci. Rep. 14, 604 (2024).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goutte, C. & Gaussier, E. A probabilistic interpretation of precision, recall and f-score, with implication for evaluation (ed. Losada, D.E. & Fernandez-Luna, J.M.) 345–359. (Springer, 2005).Hossin, M. & Sulaiman, M. N. A review on evaluation metrics for data classification evaluations. Int. J. Data Mining Know. Manag. Process. 5(2), 1. https://doi.org/10.5121/ijdkp.2015.5201(2015) (2015).Article 

Google Scholar 
Etikan, I. & Bala, K. Sampling and sampling methods. Biometrics Biostat. Int. J. 5, 00149. https://doi.org/10.15406/bbij.2017.05.00149 (2017).Article 

Google Scholar 
Cohen, J. M. et al. Malaria resurgence: a systematic review and assessment of its causes. Malaria J. 11, 1–17 (2012).
Google Scholar 
Harris, M. J., Hay, S. I. & Drake, J. M. Early warning signals of malaria resurgence in Kericho Kenya. Biol. Lett. 16, 20190713 (2020).PubMed 
PubMed Central 

Google Scholar 
Kamana, E., Zhao, J. & Bai, D. Predicting the impact of climate change on the re- emergence of malaria cases in China using lstmseq2seq deep learning model: a modelling and prediction analysis study. BMJ Open. 12, e053922 (2022).PubMed 
PubMed Central 

Google Scholar 
Cook, J. et al. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia. Malaria J. 11, 1–12 (2012).
Google Scholar 
Speybroeck, N. Classification and regression trees. Int. J. Public Health 57, 243–246 (2012).CAS 
PubMed 

Google Scholar 
Surendra, H. et al. Analysis of serological data to investigate heterogeneity of malaria transmission: a community-based cross-sectional study in an area conducting elimination in Indonesia. Malaria J. 18, 1–12 (2019).
Google Scholar 
Tekle, G. Application of GLM (logistic regression) on serological data of malaria infection. Biom. Biostat. Int. J. 8, 1–4 (2019).
Google Scholar 
Sahin, Ö. Evaluation of some factors on birth and weaning weights in Awassi sheep by using glm and cart analysis. Trop. Animal Health Product. 54, 400 (2022).
Google Scholar 
Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Ann. Rev. Entomol. 60, 123–140 (2015).CAS 

Google Scholar 
Miles, A. et al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature 552, 96 (2017).ADS 

Google Scholar 
Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasites Vect. 4, 1–46 (2011).
Google Scholar 
Alemu, A., Abebe, G., Tsegaye, W. & Golassa, L. Climatic variables and malaria transmission dynamics in Jimma town Southwest Ethiopia. Parasites Vect. 4, 1–11 (2011).
Google Scholar 
Christiansen-Jucht, C., Parham, P. E., Saddler, A., Koella, J. C. & Basáñez, M. G. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s. Parasites Vect. 7, 1–10 (2014).
Google Scholar 
Reisen, W. et al. Mosquito and arbovirus ecology in southeastern California, 1986–1990. J. Med. Entomol. 29, 512–524 (1992).CAS 
PubMed 

Google Scholar 
Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Nat. Acad. Sci. 107, 15135–15139 (2010).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, X., Chen, F., Feng, Z., Li, X. & Zhou, X.-H. Characterizing the effect of temperature fluctuation on the incidence of malaria: an epidemiological study in south-west China using the varying coefficient distributed lag non-linear model. Malaria J. 13, 1–10 (2014).ADS 

Google Scholar 
Beck-Johnson, L. M. et al. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. Royal Soc. Open Sci. 4, 160969 (2017).ADS 

Google Scholar 
Tompkins, A. M. & Ermert, V. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malaria J. 12, 1–24 (2013).
Google Scholar 
Liebmann, B. et al. Seasonality of African precipitation from 1996 to 2009. J. Clim. 25, 4304–4322 (2012).ADS 

Google Scholar 
Fouque, F. & Reeder, J. C. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect. Dis. Pov. 8, 1–9 (2019).
Google Scholar 
Maidment, R. I., Allan, R. P. & Black, E. Recent observed and simulated changes in precipitation over Africa. Geophys. Res. Lett. 42, 8155–8164 (2015).ADS 

Google Scholar 
Nicholson, S. E., Funk, C. & Fink, A. H. Rainfall over the African continent from the 19th through the 21st century. Global Planet. Change 165, 114–127 (2018).ADS 

Google Scholar 
Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. 111, 3286–3291 (2014).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Paaijmans, K. P., Wandago, M. O., Githeko, A. K. & Takken, W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PloS ONE 2, e1146 (2007).ADS 
PubMed 
PubMed Central 

Google Scholar 
Wayant, N. M., Maldonado, D., de Arias, A. R., Cousino, B. & Goodin, D. G. Correlation between normalized difference vegetation index and malaria in a subtropical rain forest undergoing rapid anthropogenic alteration. Geospat. Health 4, 179–190 (2010).PubMed 

Google Scholar 
Nihei, N., Hashida, Y., Kobayashi, M. & Ishii, A. Analysis of malaria endemic areas on the Indochina Peninsula using remote sensing. Japan. J. Infect. Dis. 55, 160–166 (2002).
Google Scholar 
Okiring, J. et al. Associations between environmental covariates and temporal changes in malaria incidence in high transmission settings of Uganda: a distributed lag nonlinear analysis. BMC Public Health 21, 1–11 (2021).
Google Scholar 
Sewe, M. O., Ahlm, C. & Rocklov, J. Remotely sensed environmental conditions and malaria mortality in three malaria endemic regions in Western Kenya. PloS ONE 11, e0154204 (2016).PubMed 
PubMed Central 

Google Scholar 
Gallup, J. L. & Sachs, J. D. The economic burden of malaria. Am. Soc. Trop. Med. Hygiene 64, 1–14 (2000).
Google Scholar 
Andrade, M. V. et al. The economic burden of malaria: a systematic review. Malaria J. 21, 283 (2022).
Google Scholar 
Sarma, N., Patouillard, E., Cibulskis, R. E. & Arcand, J. L. The economic burden of malaria: revisiting the evidence. Am. J. Tropical Med. Hygiene 101, 1405 (2019).
Google Scholar 
Hernández-Ramírez, E., del Castillo-Mussot, M. & Hernández-Casildo, J. World per capita gross domestic product measured nominally and across countries with purchasing power parity: stretched exponential or boltzmann–gibbs distribution?. Phys. A: Stat. Mech. Appl. 568, 125690 (2021).
Google Scholar 
Leimbach, M., Kriegler, E., Roming, N. & Schwanitz, J. Future growth patterns of world regions–a gdp scenario approach. Glob. Environ. Change 42, 215–225 (2017).
Google Scholar 
Wilson, M. L. et al. Urban malaria: understanding its epidemiology, ecology, and transmission across seven diverse ICEMR network sites. Am. J. Trop. Med. Hygiene 93, 110–123 (2015).
Google Scholar 
Faulde, M. K., Rueda, L. M. & Khaireh, B. A. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, horn of Africa. Acta Tropica 139, 39–43 (2014).PubMed 

Google Scholar 
Chen, Y. et al. Malaria epidemiological characteristics and control in Guangzhou, China, 1950–2022. Malaria J. 22, 265 (2023).
Google Scholar 
Tatem, A. J., Gething, P. W., Smith, D. L. & Hay, S. I. Urbanization and the global malaria recession. Malaria J. 12, 133. https://doi.org/10.1186/1475-2875-12-133 (2013).Article 

Google Scholar 
World Health Organization. World malaria report 2010. Technical report, WHO Geneva (2010).Abiodun, G. J. et al. Investigating the resurgence of malaria prevalence in South Africa between 2015 and 2018: a scoping review. The Open Public Health J. 13, (2020).Greenwood, B. et al. Resurgent and delayed malaria. Malaria J. 21, 77 (2022).
Google Scholar 
Epstein, A. et al. Resurgence of malaria in Uganda despite sustained indoor residual spraying and repeated long lasting insecticidal net distributions. PLOS Global Public Health. 2, e0000676 (2022).PubMed 
PubMed Central 

Google Scholar 
Narula, A. K., Azad, C. S. & Nainwal, L. M. New dimensions in the field of antimalarial research against malaria resurgence. Eur. J. Med. Chem. 181, 111353 (2019).CAS 
PubMed 

Google Scholar 
Franco-Herrera, D. et al. Relationship between malaria epidemiology and the human development index in Colombia and Latin America. Infez Med. 26(3), 255–262 (2018).PubMed 

Google Scholar 
Griffin, J. T. Is a reproduction number of one a threshold for Plasmodium falciparum malaria elimination?. Malaria J. 15, 1–12 (2016).
Google Scholar 
Smith, D. L., McKenzie, F. E., Snow, R. W. & Hay, S. I. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 5, Dae42 (2007).
Google Scholar 

Hot Topics

Related Articles