Observed kinetics for the production of diethyl carbonate from CO2 and ethanol catalyzed by CuNi nanoparticles supported on activated carbon

Bashir, M. et al. Strontium-based nanomaterials for the removal of organic/inorganic contaminants from water: A review. Coord. Chem. Rev. 492, 215286 (2023).Article 
CAS 

Google Scholar 
Lee, C. T., Tsai, C. C., Wu, P. J., Yu, B. Y. & Lin, S. T. Screening of CO2 utilization routes from process simulation: Design, optimization, environmental and techno-economic analysis. J. CO2 Util. 53, 101722 (2021).Article 
CAS 

Google Scholar 
Han, J. Catalytic syngas production from carbon dioxide of two emission source scenarios: Techno-economic assessment. J. Ind. Eng. Chem. 96, 213–218 (2021).Article 
CAS 

Google Scholar 
Kim, H., Byun, M., Lee, B. & Lim, H. Carbon-neutral methanol synthesis as carbon dioxide utilization at different scales: Economic and environmental perspectives. Energy Convers. Manag. 252, 115119 (2022).Article 
CAS 

Google Scholar 
Koohestanian, E., Sadeghi, J., Mohebbi-Kalhori, D., Shahraki, F. & Samimi, A. A novel process for CO2 capture from the flue gases to produce urea and ammonia. Energy 144, 279–285 (2018).Article 
CAS 

Google Scholar 
Dai, W.-L., Luo, S.-L., Yin, S.-F. & Au, C.-T. The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl. Catal. A Gen. 366, 2–12 (2009).Article 
CAS 

Google Scholar 
Putro, W. S. et al. Sustainable catalytic synthesis of diethyl carbonate. ChemSusChem https://doi.org/10.1002/cssc.202002471 (2020).Article 
PubMed 

Google Scholar 
Jote, B. A. et al. Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. J. Power Sources 461, 228102 (2020).Article 
CAS 

Google Scholar 
Li, D., Fang, W., Xing, Y., Guo, Y. & Lin, R. Effects of dimethyl or diethyl carbonate as an additive on volatility and flash point of an aviation fuel. J. Hazard. Mater. 161, 1193–1201 (2009).Article 
CAS 
PubMed 

Google Scholar 
Schäffner, B., Schäffner, F., Verevkin, S. P. & Börner, A. Organic carbonates as solvents in synthesis and catalysis. Chem. Rev. 110, 4554–4581 (2010).Article 
PubMed 

Google Scholar 
Tan, H. Z. et al. Review on the synthesis of dimethyl carbonate. Catal. Today 316, 2–12 (2018).Article 
CAS 

Google Scholar 
Chen, P., Huang, S., Zhang, J., Wang, S. & Ma, X. Enhanced CuCl dispersion by regulating acidity of MCM-41 for catalytic oxycarbonylation of ethanol to diethyl carbonate. Front. Chem. Sci. Eng. 9, 224–231 (2015).Article 
ADS 
CAS 

Google Scholar 
Fan, M., Zhang, P. & Ma, X. Study on Wacker-type catalysts for catalytic synthesis of diethyl carbonate from ethyl nitrite route. Fuel 86, 902–905 (2007).Article 
CAS 

Google Scholar 
Wang, L. et al. Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide, epoxides and ethanol over KI-based binary catalyst system. Appl. Catal. A Gen. 471, 19–27 (2014).Article 
CAS 

Google Scholar 
Décultot, M., Ledoux, A., Fournier-Salaün, M. C. & Estel, L. Kinetic modelling of the synthesis of diethyl carbonate and propylene carbonate from ethanol and 1,2-propanediol associated with CO2. Chem. Eng. Res. Des. 161, 1–10 (2020).Article 

Google Scholar 
Wang, L. et al. The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide, CO2 and ethanol over binary PVEImBr/MgO catalyst. Catal. Today 281, 360–370 (2017).Article 
CAS 

Google Scholar 
Xin, S., Wang, L., Li, H., Huang, K. & Li, F. Synthesis of diethyl carbonate from urea and ethanol over lanthanum oxide as a heterogeneous basic catalyst. Fuel Process. Technol. 126, 453–459 (2014).Article 
CAS 

Google Scholar 
Dibenedetto, A. et al. General synthesis of diethylcarbonate by ethanolysis of urea: A study on the recoverability and recyclability of new Zn-based heterogeneous catalysts. Appl. Catal. A Gen. 493, 1–7 (2015).Article 
CAS 

Google Scholar 
Shukla, K. & Srivastava, V. C. Diethyl carbonate synthesis by ethanolysis of urea using Ce–Zn oxide catalysts. Fuel Process. Technol. 161, 116–124 (2017).Article 
CAS 

Google Scholar 
Murugan, C. & Bajaj, H. C. Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF/Al2O3 as an efficient solid base catalyst. Fuel Process. Technol. 92, 77–82 (2011).Article 
CAS 

Google Scholar 
Fujita, S., Bhanage, B. M., Arai, M. & Ikushima, Y. Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: Effect of reaction conditions and reaction mechanism. Green Chem. 3, 87–91 (2001).Article 
CAS 

Google Scholar 
Gasc, F., Thiebaud-Roux, S. & Mouloungui, Z. Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate. J. Supercrit. Fluids 50, 46–53 (2009).Article 
CAS 

Google Scholar 
Yoshida, Y., Arai, Y., Kado, S., Kunimori, K. & Tomishige, K. Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal. Today 115, 95–101 (2006).Article 
CAS 

Google Scholar 
Prymak, I., Kalevaru, V. N., Wohlrab, S. & Martin, A. Continuous synthesis of diethyl carbonate from ethanol and CO2 over Ce–Zr–O catalysts. Catal. Sci. Technol. 5, 2322–2331 (2015).Article 
CAS 

Google Scholar 
Leino, E., Kumar, N., Mäki-arvela, P. & Rautio, A. Synthesis and characterization of ceria-supported catalysts for carbon dioxide transformation to diethyl carbonate. Catal. Today 306, 128–137 (2018).Article 
CAS 

Google Scholar 
Denardin, F. G. & Valença, G. P. Synthesis of diethyl carbonate from ethanol and CO2 over ZrO2 catalysts. Braz. J. Chem. Eng. https://doi.org/10.1007/s43153-020-00073-3 (2020).Article 

Google Scholar 
Wang, W., Wang, S., Ma, X. & Gong, J. Crystal structures, acid–base properties, and reactivities of CexZr1−xO2 catalysts. Catal. Today 148, 323–328 (2009).Article 
CAS 

Google Scholar 
Aouissi, A. & Al-Deyab, S. S. Comparative study between gas phase and liquid phase for the production of DMC from methanol and CO2. J. Nat. Gas Chem. 21, 189–193 (2012).Article 
CAS 

Google Scholar 
Arbeláez, O., Orrego, A., Bustamante, F. & Villa, A. L. Direct synthesis of diethyl carbonate from CO2 and CH3CH2OH Over Cu–Ni/AC catalyst. Top. Catal. 55, 668–672 (2012).Article 

Google Scholar 
Bustamante, F. & Arbela, O. Effect of acidity, basicity and ZrO2 phases of Cu–Ni/ZrO2 catalysts on the direct synthesis of diethyl carbonate from CO2 and ethanol. Catal. Lett. https://doi.org/10.1007/s10562-016-1699-4 (2016).Article 

Google Scholar 
Arbeláez, O., Hernández, E., González, L. M., Bustamante, F. & Villa, A. L. Enhanced conversion in the direct synthesis of diethyl carbonate from ethanol and CO2 by process intensification. Chem. Eng. Technol. 42, 1135–1143 (2019).Article 

Google Scholar 
Tayyab, M. et al. One-pot in-situ hydrothermal synthesis of ternary In2S3/Nb2O5/Nb2C Schottky/S-scheme integrated heterojunction for efficient photocatalytic hydrogen production. J. Colloid Interface Sci. 628, 500–512 (2022).Article 
CAS 
PubMed 

Google Scholar 
Tayyab, M. et al. Simultaneous hydrogen production with the selective oxidation of benzyl alcohols to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires Chinese. J. Catal. 43, 1165–1175 (2022).CAS 

Google Scholar 
Bian, J. et al. Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst. Chem. Eng. J. 147, 287–296 (2009).Article 
CAS 

Google Scholar 
Deng, X. et al. Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 24, 9474–9478 (2008).Article 
CAS 
PubMed 

Google Scholar 
Gan, L., Tian, R., Yang, X., Lu, H. & Zhao, Y. Catalytic reactivity of CuNi alloys toward H2O and CO dissociation for an efficient water à gas shift: A DFT study. J. Phys. Chem. C 116, 745–752 (2012).Article 
CAS 

Google Scholar 
Orrego-romero, A. F., Arbeláez-pérez, O. F., Bustamante-londoño, F., Luz, A. & Holguín, V. Pelletization of catalysts supported on activated carbon. A case study: Clean synthesis of dimethyl carbonate from methanol and CO2. Revista Facultad de Ingeniería Universidad de Antioquia 66, 38–47. https://doi.org/10.17533/udea.redin.n78a05 (2016).Article 
CAS 

Google Scholar 
Chen, H. et al. Direct synthesis of dimethyl carbonate from CO2 and CH3OH Using 0.4 nm molecular sieve supported Cu–Ni bimetal catalyst. Chin. J. Chem. Eng. 20, 906–913 (2012).Article 
ADS 
CAS 

Google Scholar 
Bian, J. et al. Direct synthesis of dimethyl carbonate over activated carbon supported Cu-based catalysts. Chem. Eng. J. 165, 686–692 (2010).Article 
CAS 

Google Scholar 
Bian, J., Xiao, M., Wang, S.-J., Lu, Y.-X. & Meng, Y.-Z. Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl. Surf. Sci. 255, 7188–7196 (2009).Article 
ADS 
CAS 

Google Scholar 
Leino, E. et al. Conventional synthesis methods of short-chain dialkylcarbonates and novel production technology via direct route from alcohol and waste CO2. Appl. Catal. A Gen. 383, 1–13 (2010).Article 
CAS 

Google Scholar 
Yu, B., Wu, P., Tsai, C., Lin, S. & Picolinimidate, E. Evaluating the direct CO2 to diethyl carbonate (DEC) process: Rigorous simulation, techno-economical and environmental evaluation. J. CO2 Util. 41, 101254 (2020).Article 
CAS 

Google Scholar 
Giram, G. G., Bokade, V. V. & Darbha, S. Direct synthesis of diethyl carbonate from ethanol and carbon dioxide over ceria catalysts. New J. Chem. 42, 17546–17552 (2018).Article 
CAS 

Google Scholar 
Pérez, O. F. A., Cardozo, S. D., Romero, A. F. O., Holguín, A. L. V. & Bustamante, F. Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study. Rev. Fac. Ing. https://doi.org/10.17533/udea.redin.20190941 (2020).Article 

Google Scholar 
Khromova, S. A. et al. Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity. Appl. Catal. A Gen. 470, 261–270 (2014).Article 
CAS 

Google Scholar 
Arbeláez, O. et al. Mono and bimetallic Cu–Ni structured catalysts for the water gas shift reaction. Appl. Catal. A Gen. 497, 1–9 (2015).Article 

Google Scholar 
Bobadilla, L. F. et al. Steam reforming of methanol over supported Ni and Ni–Sn nanoparticles. Int. J. Hydrog. Energy 38, 6646–6656 (2013).Article 
ADS 
CAS 

Google Scholar 
Yue, W. et al. Schottky junction enhanced H2 evolution for graphitic carbon nitride–NiS composite photocatalysts. J. Colloid Interface Sci. 657, 133–141 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Liu, Y. et al. Single-atom Pt loaded Zinc vacancies ZnO–ZnS induced type-V electron transport for efficiency photocatalytic H2 evolution. Solar RRL 5, 9–17 (2021).Article 

Google Scholar 
Wei, H. et al. In situ growth of NixCu1−x alloy nanocatalysts on redox-reversible rutile (Nb, Ti)O4 towards high-temperature carbon dioxide electrolysis. Sci. Rep. 4, 1–11 (2014).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles