The astrochemical evolutionary traits of phospholipid membrane homochirality

Howlett, M. G. & Fletcher, S. P. From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nat. Rev. Chem. 7, 673–691 (2023).Article 
PubMed 

Google Scholar 
Schmitt-Kopplin, P. et al. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl Acad. Sci. USA 107, 2763–2768 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Öberg, K. I. Photochemistry and astrochemistry: photochemical pathways to interstellar complex organic molecules. Chem. Rev. 116, 9631–9663 (2016).Article 
PubMed 

Google Scholar 
van Dishoeck, E. F. Astrochemistry of dust, ice and gas: introduction and overview. Faraday Discuss. 168, 9–47 (2014).Article 
CAS 
PubMed 

Google Scholar 
Tielens, A. G. G. M. The molecular universe. Rev. Mod. Phys. 85, 1021–1081 (2013).Article 
CAS 

Google Scholar 
Burke, D. J. & Brown, W. A. Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces. Phys. Chem. Chem. Phys. 12, 5947–5969 (2010).Article 
CAS 
PubMed 

Google Scholar 
Potapov, A., Jäger, C. & Henning, T. Ice coverage of dust grains in cold astrophysical environments. Phys. Rev. Lett. 124, 221103 (2020).Article 
CAS 
PubMed 

Google Scholar 
Rosu-Finsen, A. et al. Peeling the astronomical onion. Phys. Chem. Chem. Phys. 18, 31930–31935 (2016).Article 
CAS 
PubMed 

Google Scholar 
Cohen, Z. R. et al. Plausible sources of membrane-forming fatty acids on the early Earth: a review of the literature and an estimation of amounts. ACS Earth Space Chem. 7, 11–27 (2023).Article 
CAS 
PubMed 

Google Scholar 
Glavin, D. P., Burton, A. S., Elsila, J. E., Aponte, J. C. & Dworkin, J. P. The search for chiral asymmetry as a potential biosignature in our Solar System. Chem. Rev. 120, 4660–4689 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wilhelm, M. B. et al. Extraction instruments to enable detection of origin-diagnostic lipids for life detection. In 52nd Lunar and Planetary Science Conference LPI contribution no. 2548, id.2634 (LPI, 2021).Finkel, P. L., Carrizo, D., Parro, V. & Sánchez-García, L. An overview of lipid biomarkers in terrestrial extreme environments with relevance for Mars exploration. Astrobiology 23, 563–604 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Peretó, J., López-García, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29, 469–477 (2004).Article 
PubMed 

Google Scholar 
Chen, L. L., Pousada, M. & Haines, T. H. The flagellar membrane of Ochromonas danica. Lipid composition. J. Biol. Chem. 251, 1835–1842 (1976).Article 
CAS 
PubMed 

Google Scholar 
Moss, F. R. et al. Halogenation-dependent effects of the chlorosulfolipids of Ochromonas danica on lipid bilayers. ACS Chem. Biol. 15, 2986–2995 (2020).Article 
PubMed Central 

Google Scholar 
Pohorille, A. & Deamer, D. Self-assembly and function of primitive cell membranes. Res. Microbiol. 160, 449–456 (2009).Article 
CAS 
PubMed 

Google Scholar 
Namani, T. et al. Novel chimeric amino acid-fatty alcohol ester amphiphiles self-assemble into stable primitive membranes in diverse geological settings. Astrobiology 23, 327–343 (2023).Article 
CAS 
PubMed 

Google Scholar 
Suzuki, N. & Itabashi, Y. Possible roles of amphiphilic molecules in the origin of biological homochirality. Symmetry 11, 966 (2019).Article 
CAS 

Google Scholar 
Azua-Bustos, A. et al. Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits. Nat. Commun. 14, 808 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martin, H. S., Podolsky, K. A. & Devaraj, N. K. Probing the role of chirality in phospholipid membranes. ChemBioChem 22, 3148–3157 (2021).Article 
CAS 
PubMed 

Google Scholar 
Bilia, A. R. et al. Vesicles and micelles: two versatile vectors for the delivery of natural products. J. Drug Deliv. Sci. Technol. 32, 241–255 (2016).Article 
CAS 

Google Scholar 
Liu, P., Chen, G. & Zhang, J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27, 1372 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, W., Ye, A., Han, F. & Han, J. Advances and challenges in liposome digestion: surface interaction, biological fate, and GIT modeling. Adv. Colloid Interface Sci. 263, 52–67 (2019).Article 
CAS 
PubMed 

Google Scholar 
Benvegnu, T., Lemiègre, L. & Cammas-Marion, S. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Pat. Drug Deliv. Formul. 3, 206–220 (2009).Article 
CAS 
PubMed 

Google Scholar 
Paolucci, V., Leriche, G., Koyanagi, T. & Yang, J. Evaluation of tetraether lipid-based liposomal carriers for encapsulation and retention of nucleoside-based drugs. Bioorg. Med. Chem. Lett. 27, 4319–4322 (2017).Article 
CAS 
PubMed 

Google Scholar 
Penkauskas, T. & Preta, G. Biological applications of tethered bilayer lipid membranes. Biochimie 157, 131–141 (2019).Article 
CAS 
PubMed 

Google Scholar 
Jiang, Y., Thienpont, B., Sturgis, J. N., Dittman, J. & Scheuring, S. Membrane-mediated protein interactions drive membrane protein organization. Nat. Commun. 13, 7373 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fiore, M. & Buchet, R. Symmetry breaking of phospholipids. Symmetry 12, 1488 (2020).Article 
CAS 

Google Scholar 
Gattinger, A., Schloter, M. & Munch, J. C. Phospholipid etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeotal monocultures for taxonomic profiling. FEMS Microbiol. Lett. 213, 133–139 (2002).Article 
CAS 
PubMed 

Google Scholar 
Dibrova, D. V., Galperin, M. Y. & Mulkidjanian, A. Y. Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ. Microbiol. 16, 907–918 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Damsté, J. S. et al. Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch. Microbiol. 188, 629–641 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Weijers, J. W. H. et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ. Microbiol. 8, 648–657 (2006).Article 
CAS 
PubMed 

Google Scholar 
Villanueva, L. et al. Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. ISME J. 15, 168–182 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wächtershäuser, G. From pre-cells to Eukarya – a tale of two lipids. Mol. Microbiol. 47, 13–22 (2003).Article 
PubMed 

Google Scholar 
Koga, Y. Early evolution of membrane lipids: how did the lipid divide occur? J. Mol. Evol. 72, 274–282 (2011).Article 
CAS 
PubMed 

Google Scholar 
Shimada, H. & Yamagishi, A. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry 50, 4114–4120 (2011).Article 
CAS 
PubMed 

Google Scholar 
Caforio, A. et al. Converting Escherichia coli into an archaebacterium with a hybrid heterochiral membrane. Proc. Natl Acad. Sci. USA 115, 3704–3709 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kates, M., Joo, C. N., Palameta, B. & Shier, T. Absolute stereochemical configuration of phytanyl (dihydrophytyl) groups in lipids of Halobacterium cutirubrum. Biochemistry 6, 3329–3338 (1967).Article 
CAS 
PubMed 

Google Scholar 
Leseigneur, G., Filippi, J. J., Baldovini, N. & Meierhenrich, U. Absolute configuration of aliphatic hydrocarbon enantiomers identified by gas chromatography: theorized application for isoprenoid alkanes and the search of molecular biosignatures on Mars. Symmetry 14, 326 (2022).Article 
CAS 

Google Scholar 
Caforio, A. & Driessen, A. J. M. Archaeal phospholipids: structural properties and biosynthesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1325–1339 (2017).Article 
CAS 
PubMed 

Google Scholar 
Fiore, M. et al. Synthesis of phospholipids under plausible prebiotic conditions and analogies with phospholipid biochemistry for origin of life studies. Astrobiology 22, 598–627 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lang, C., Lago, J. & Pasek, M. A. in Handbook of Astrobiology 1st edn (ed. Kolb, V. M.) Ch. 5.8 (Taylor & Francis Group, 2019).Hargreaves, W. R. & Deamer, D. W. Liposomes from ionic, single-chain amphiphiles. Biochemistry 17, 3759–3768 (1978).Article 
CAS 
PubMed 

Google Scholar 
Gebicki, J. M. & Hicks, M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 243, 232–234 (1973).Article 
CAS 
PubMed 

Google Scholar 
Apel, C. L., Deamer, D. W. & Mautner, M. N. Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim. Biophys. Acta Biomembr. 1559, 1–9 (2002).Article 
CAS 

Google Scholar 
Namani, T. & Deamer, D. W. Stability of model membranes in extreme environments. Orig. Life Evol. Biosph. 38, 329–341 (2008).Article 
CAS 
PubMed 

Google Scholar 
Mansy, S. S. & Szostak, J. W. Thermostability of model protocell membranes. Proc. Natl Acad. Sci. USA 105, 13351–13355 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mansy, S. S. Model protocells from single-chain lipids. Int. J. Mol. Sci. 10, 835–843 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Milshteyn, D., Damer, B., Havig, J. & Deamer, D. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in seawater. Life 8, 11 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Black, R. A. et al. Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. Proc. Natl Acad. Sci. USA 110, 13272–13276 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cornell, C. E. et al. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc. Natl Acad. Sci. USA 116, 17239–17244 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jordan, S. F., Nee, E. & Lane, N. Isoprenoids enhance the stability of fatty acid membranes at the emergence of life potentially leading to an early lipid divide. Interface Focus 9, 20190067 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lin, Y., Jing, H., Liu, Z., Chen, J. & Liang, D. Dynamic behavior of complex coacervates with internal lipid vesicles under nonequilibrium conditions. Langmuir 36, 1709–1717 (2020).Article 
CAS 
PubMed 

Google Scholar 
Pir Cakmak, F., Grigas, A. T. & Keating, C. D. Lipid vesicle-coated complex coacervates. Langmuir 35, 7830–7840 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dora Tang, T. Y. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6, 527–533 (2014).Article 
CAS 
PubMed 

Google Scholar 
Ianeselli, A. et al. Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells. Nat. Chem. 14, 32–39 (2022).Article 
CAS 
PubMed 

Google Scholar 
Jia, T. Z. et al. Membraneless polyester microdroplets as primordial compartments at the origins of life. Proc. Natl Acad. Sci. USA 116, 15830–15835 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Joshi, M. P., Sawant, A. A. & Rajamani, S. Spontaneous emergence of membrane-forming protoamphiphiles from a lipid–amino acid mixture under wet–dry cycles. Chem. Sci. 12, 2970–2978 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Joshi, M. P., Uday, A. & Rajamani, S. Elucidating N-acyl amino acids as a model protoamphiphilic system. Commun. Chem. 5, 147 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Forsythe, J. G. et al. Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic Earth. Angew. Chem. Int. Ed. 54, 9871–9875 (2015).Article 
CAS 

Google Scholar 
Frenkel-Pinter, M. et al. Thioesters provide a plausible prebiotic path to proto-peptides. Nat. Commun. 13, 2569 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schmitt-Kopplin, P. et al. Complex carbonaceous matter in Tissint martian meteorites give insights into the diversity of organic geochemistry on Mars. Sci. Adv. 9, eadd6439 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Oró, J. Comets and the formation of biochemical compounds on the primitive Earth. Nature 190, 389–390 (1961).Article 

Google Scholar 
Miller, S. L. & Urey, H. C. Organic compound synthesis on the primitive Earth. Science 130, 245–251 (1959).Article 
CAS 
PubMed 

Google Scholar 
Oparin, A. I. The Origin of Life on the Earth (Academic Press, 1957).Russell, M. J., Hall, A. J., Cairns-Smith, A. G. & Braterman, P. S. Submarine hot springs and the origin of life. Nature 336, 117 (1988).Article 

Google Scholar 
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).Article 
CAS 
PubMed 

Google Scholar 
Buckner, D. K. et al. Origin-diagnostic patterns in lipid distributions: strategies for life detection. In 53rd Lunar and Planetary Science Conference LPI contribution no. 2678, id.2571 (LPI, 2022).Dworkin, J. P., Deamer, D. W., Sandford, S. A. & Allamandola, L. J. Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc. Natl Acad. Sci. USA 98, 815–819 (2001).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pierazzo, E. & Chyba, C. F. Amino acid survival in large cometary impacts. Meteorit. Planet. Sci. 34, 909–918 (1999).Article 
CAS 

Google Scholar 
Chyba, C. F., Thomas, P. J., Brookshaw, L. & Sagan, C. Cometary delivery of organic molecules to the early Earth. Science 249, 366–373 (1990).Article 
CAS 
PubMed 

Google Scholar 
Osinski, G. R., Cockell, C. S., Pontefract, A. & Sapers, H. M. The role of meteorite impacts in the origin of life. Astrobiology 20, 1121–1149 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mehta, C., Perez, A., Thompson, G. & Pasek, M. A. Caveats to exogenous organic delivery from ablation, dilution, and thermal degradation. Life 8, 13 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Blackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 11, a032540 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garcia, A. D. et al. The astrophysical formation of asymmetric molecules and the emergence of a chiral bias. Life 9, 29 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nam, I., Lee, J. K., Nam, H. G. & Zare, R. N. Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. Proc. Natl Acad. Sci. USA 114, 12396–12400 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pasek, M. A., Gull, M. & Herschy, B. Phosphorylation on the early earth. Chem. Geol. 475, 149–170 (2017).Article 
CAS 

Google Scholar 
Pasek, M. A. Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci. Front. 8, 329–335 (2017).Article 
CAS 

Google Scholar 
Hess, B. L., Piazolo, S. & Harvey, J. Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth. Nat. Commun. 12, 1535 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pasek, M. A. Thermodynamics of prebiotic phosphorylation. Chem. Rev. 120, 4690–4706 (2020).Article 
CAS 
PubMed 

Google Scholar 
Pasek, M. A., Harnmeijer, J. P., Buick, R., Gull, M. & Atlas, Z. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl Acad. Sci. USA 110, 10089–10094 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).Article 
CAS 
PubMed 

Google Scholar 
Agúndez, M., Cernicharo, J., Decin, L., Encrenaz, P. & Teyssier, D. Confirmation of circumstellar phosphine. Astrophys. J. Lett. 790, L27 (2014).Article 

Google Scholar 
Ridgway, S. T., Wallace, L. & Smith, G. R. The 800-1200 inverse centimeter absorption spectrum of Jupiter. Astrophys. J. 207, 1002–1006 (1976).Article 
CAS 

Google Scholar 
Larson, H. P., Fink, U., Smith, H. A. & Davis, D. S. The middle-infrared spectrum of Saturn – evidence for phosphine and upper limits to other trace atmospheric constituents. Astrophys. J. 240, 327–337 (1980).Article 
CAS 

Google Scholar 
Rivilla, V. M. et al. ALMA and ROSINA detections of phosphorus-bearing molecules: the interstellar thread between star-forming regions and comets. Mon. Not. R. Astron. Soc. 492, 1180–1198 (2020).Article 
CAS 

Google Scholar 
Rivilla, V. M. et al. Phosphorus-bearing molecules in the Galactic Center. Mon. Not. R. Astron. Soc. Lett. 475, L30–L34 (2018).Article 
CAS 

Google Scholar 
Zhu, C. et al. An interstellar synthesis of glycerol phosphates. Astrophys. J. Lett. 899, L3 (2020).Article 
CAS 

Google Scholar 
Aleksandrova, M., Rahmatova, F., Russell, D. A. & Bonfio, C. Ring opening of glycerol cyclic phosphates leads to a diverse array of potentially prebiotic phospholipids. J. Am. Chem. Soc. 145, 25614–25620 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rivilla, V. M. et al. Discovery in space of ethanolamine, the simplest phospholipid head group. Proc. Natl Acad. Sci. USA 118, e2101314118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Glavin, D. P. et al. Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteorit. Planet. Sci. 45, 1695–1709 (2010).Article 
CAS 

Google Scholar 
Bernstein, M. P., Dworkin, J. P., Sandford, S. A., Cooper, G. W. & Allamandola, L. J. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416, 401–403 (2002).Article 
CAS 
PubMed 

Google Scholar 
Bocková, J., Garcia, A. D., Jones, N. C., Hoffmann, S. V. & Meinert, C. Chiroptical properties of membrane glycerophospholipids and their chiral backbones. Chirality 36, e23654 (2024).Article 
PubMed 

Google Scholar 
Meinert, C. et al. Anisotropy spectra of amino acids. Angew. Chem. Int. Ed. 51, 4484–4487 (2012).Article 
CAS 

Google Scholar 
De Marcellus, P. et al. Aldehydes and sugars from evolved precometary ice analogs: importance of ices in astrochemical and prebiotic evolution. Proc. Natl Acad. Sci. USA 112, 956–970 (2015).Article 

Google Scholar 
Meinert, C. et al. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352, 208–212 (2016).Article 
CAS 
PubMed 

Google Scholar 
Pizzarello, S., Schrader, D. L., Monroe, A. A. & Lauretta, D. S. Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proc. Natl Acad. Sci. USA 109, 11949–11954 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ishigami, T., Suga, K. & Umakoshi, H. Chiral recognition of l-amino acids on liposomes prepared with l-phospholipid. ACS Appl. Mater. Interfaces 7, 21065–21072 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ishigami, T., Kaneko, Y., Suga, K., Okamoto, Y. & Umakoshi, H. Homochiral oligomerization of L-histidine in the presence of liposome membranes. Colloid Polym. Sci. 293, 3649–3653 (2015).Article 
CAS 

Google Scholar 
Bocková, J., Jones, N. C., Meierhenrich, U. J., Hoffmann, S. V. & Meinert, C. Chiroptical activity of hydroxycarboxylic acids with implications for the origin of biological homochirality. Commun. Chem. 4, 86 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Pizzarello, S., Wang, Y. & Chaban, G. M. A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites. Geochim. Cosmochim. Acta 74, 6206–6217 (2010).Article 
CAS 

Google Scholar 
Burton, A. S. & Berger, E. L. Insights into abiotically-generated amino acid enantiomeric excesses found in meteorites. Life 8, 14 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Glavin, D. P., Callahan, M. P., Dworkin, J. P. & Elsila, J. E. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteorit. Planet. Sci. 45, 1948–1972 (2010).Article 
CAS 

Google Scholar 
Mamajanov, I. et al. Ester formation and hydrolysis during wet-dry cycles: generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules 47, 1334–1343 (2014).Article 
CAS 

Google Scholar 
Frenkel-Pinter, M. et al. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl Acad. Sci. USA 116, 16338–16346 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blocher, M., Hitz, T. & Luisi, P. L. Stereoselectivity in the oligomerization of racemic tryptophan N-carboxyanhydride (NCA-Trp) as determined by isotope labeling and mass spectrometry. Helv. Chim. Acta 84, 842–848 (2001).Article 
CAS 

Google Scholar 
Blair, N. E. & Bonner, W. A. A model for the enantiomeric enrichment of polypeptides on the primitive Earth. Orig. Life 11, 331–335 (1981).Article 
CAS 
PubMed 

Google Scholar 
Deng, M., Yu, J. & Blackmond, D. G. Symmetry breaking and chiral amplification in prebiotic ligation reactions. Nature 626, 1019–1024 (2024).Article 
CAS 
PubMed 

Google Scholar 
Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).Article 
CAS 
PubMed 

Google Scholar 
Schneider, H.-J. Limitations and extensions of the lock-and-key principle: differences between gas state, solution and solid state structures. Int. J. Mol. Sci. 16, 6694–6717 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sheng, X., Kazemi, M., Planas, F. & Himo, F. Modeling enzymatic enantioselectivity using quantum chemical methodology. ACS Catal. 10, 6430–6449 (2020).Article 
CAS 

Google Scholar 
Reetz, M. T. Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc. Natl Acad. Sci. USA 101, 5716–5722 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kapon, Y. et al. Evidence for new enantiospecific interaction force in chiral biomolecules. Chem 7, 2787–2799 (2021).Article 
CAS 

Google Scholar 
Weissbuch, I. & Lahav, M. Crystalline architectures as templates of relevance to the origins of homochirality. Chem. Rev. 111, 3236–3267 (2011).Article 
CAS 
PubMed 

Google Scholar 
Hu, J., Cochrane, W. G., Jones, A. X., Blackmond, D. G. & Paegel, B. M. Chiral lipid bilayers are enantioselectively permeable. Nat. Chem. 13, 786–791 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Han, J., Kitagawa, O., Wzorek, A., Klika, K. D. & Soloshonok, V. A. The self-disproportionation of enantiomers (SDE): a menace or an opportunity? Chem. Sci. 9, 1718–1739 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Islam, S. & Powner, M. W. Prebiotic systems chemistry: complexity overcoming clutter. Chem 2, 470–501 (2017).Article 
CAS 

Google Scholar 
Sacerdote, M. G. & Szostak, J. W. Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc. Natl Acad. Sci. USA 102, 6004–6008 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pizzarello, S. & Weber, A. L. Prebiotic amino acids as asymmetric catalysts. Science 303, 1151 (2004).Article 
CAS 
PubMed 

Google Scholar 
Breslow, R. & Cheng, Z. L. L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions. Proc. Natl Acad. Sci. USA 107, 5723–5725 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, J., Jones, A. X., Legnani, L. & Blackmond, D. G. Prebiotic access to enantioenriched glyceraldehyde mediated by peptides. Chem. Sci. 12, 6350–6354 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, L. F., Su, M., Liu, Z., Bjork, S. J. & Sutherland, J. D. Interstrand aminoacyl transfer in a tRNA acceptor stem-overhang mimic. J. Am. Chem. Soc. 143, 11836–11842 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ozturk, S. F., Sasselov, D. D. & Sutherland, J. D. The central dogma of biological homochirality: how does chiral information propagate in a prebiotic network? J. Chem. Phys. 159, 061102 (2023).Article 
CAS 
PubMed 

Google Scholar 
Hein, J. E., Tse, E. & Blackmond, D. G. A route to enantiopure RNA precursors from nearly racemic starting materials. Nat. Chem. 3, 704–706 (2011).Article 
CAS 
PubMed 

Google Scholar 
Georgiou, C. D. & Deamer, D. W. Lipids as universal biomarkers of extraterrestrial life. Astrobiology 14, 541–549 (2014).Article 
CAS 
PubMed 

Google Scholar 
Vago, J. L. et al. Habitability on early Mars and the search for biosignatures with the ExoMars rover. Astrobiology 17, 471–510 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Summons, R. E., Albrecht, P., McDonald, G. & Moldowan, J. M. Molecular biosignatures. Space Sci. Rev. 135, 133–159 (2008).Article 
CAS 

Google Scholar 
Meierhenrich, U. J., Thiemann, W. H.-P., Barbier, B., Schubert, C. J. & Brack, A. in Geochemistry and the Origin of Life (eds Nakashima, S. et al.) 269–284 (Universal Academy Press, 2001).Boeren, N. J. et al. Detecting lipids on planetary surfaces with laser desorption ionization mass spectrometry. Planet. Sci. J. 3, 241 (2022).Article 

Google Scholar 
Dannenmann, M. et al. Toward detecting biosignatures of DNA, lipids, and metabolic intermediates from bacteria in ice grains emitted by Enceladus and Europa. Astrobiology 23, 60–75 (2023).Article 
CAS 
PubMed 

Google Scholar 
Klenner, F. et al. Analog experiments for the identification of trace biosignatures in ice grains from extraterrestrial ocean worlds. Astrobiology 20, 179–189 (2020).Article 
CAS 
PubMed 

Google Scholar 
Klenner, F. et al. Discriminating abiotic and biotic fingerprints of amino acids and fatty acids in ice grains relevant to ocean worlds. Astrobiology 20, 1168–1184 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kissin, Y. V. Hydrocarbon components in carbonaceous meteorites. Geochim. Cosmochim. Acta 67, 1723–1735 (2003).Article 
CAS 

Google Scholar 
Greenberg, J. M. in Cosmic Rays, Supernovae and the Interstellar Medium NATO ASI Series, Vol. 337 (eds Shapiro, M. M. et al.) 57–68 (Springer, 1991).Arumainayagam, C. R. et al. Extraterrestrial prebiotic molecules: photochemistry vs. radiation chemistry of interstellar ices. Chem. Soc. Rev. 48, 2293–2314 (2019).Article 
CAS 
PubMed 

Google Scholar 
Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).Article 
CAS 
PubMed 

Google Scholar 
Parker, E. T. et al. Extraterrestrial amino acids and amines identified in asteroid Ryugu samples returned by the Hayabusa2 mission. Geochim. Cosmochim. Acta 347, 42–57 (2023).Article 
CAS 

Google Scholar 
Bottke, W. F. & Norman, M. D. The late heavy bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).Article 
CAS 

Google Scholar 
Bailey, J. et al. Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281, 672–674 (1998).Article 
PubMed 

Google Scholar 
Kwon, J. et al. Near-infrared circular polarization images of NGC 6334-V. Astrophys. J. Lett. 765, L6 (2013).Article 

Google Scholar 
Modica, P. et al. Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: a possible source of asymmetry for prebiotic chemistry. Astrophys. J. 788, 79 (2014).Article 

Google Scholar 
Gledhill, T. M. & McCall, A. Circular polarization by scattering from spheroidal dust grains. Mon. Not. R. Astron. Soc. 314, 123–137 (2000).Article 
CAS 

Google Scholar 
Buschermöhle, M. et al. An extended search for circularly polarized infrared radiation from the OMC‐1 region of Orion. Astrophys. J. 624, 821–826 (2005).Article 

Google Scholar 
Miller, G. E. & Scalo, J. M. On the birthplaces of stars. Publ. Astron. Soc. Pac. 90, 506–513 (1978).Article 

Google Scholar 
Hillenbrand, L. A. On the stellar population and star-forming history of the Orion Nebula Cluster. Astron. J. 113, 1733–1768 (1997).Article 
CAS 

Google Scholar 
Garcia, A. D. et al. Chiroptical activity of gas phase propylene oxide predicting the handedness of interstellar circular polarization in the presolar nebulae. Sci. Adv. 8, eadd4614 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
de Marcellus, P. et al. Non-racemic amino acid production by ultraviolet irradiation of achiral interstellar ice analogs with circularly polarized light. Astrophys. J. Lett. 727, L27 (2011).Article 

Google Scholar 
Flores, J. J., Bonner, W. A. & Massey, G. A. Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. J. Am. Chem. Soc. 99, 3622–3625 (1977).Article 
CAS 
PubMed 

Google Scholar 
Meierhenrich, U. J. et al. Photolysis of rac-leucine with circularly polarized synchrotron radiation. Chem. Biodivers. 7, 1651–1659 (2010).Article 
CAS 
PubMed 

Google Scholar 
Meierhenrich, U. J. et al. Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. Angew. Chem. Int. Ed. 44, 5630–5634 (2005).Article 
CAS 

Google Scholar 
Meinert, C. et al. Photonenergy-controlled symmetry breaking with circularly polarized light. Angew. Chem. Int. Ed. 53, 210–214 (2014).Article 
CAS 

Google Scholar 
Bocková, J., Jones, N. C., Topin, J., Hoffmann, S. V. & Meinert, C. Uncovering the chiral bias of meteoritic isovaline through asymmetric photochemistry. Nat. Commun. 14, 3381 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles