Pyridine-based strategies towards nitrogen isotope exchange and multiple isotope incorporation

Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew. Chem. Int. Ed. 57, 1758–1783 (2018).Article 
CAS 

Google Scholar 
Gant, T. G. Using Deuterium in Drug Discovery: Leaving the Label in the Drug. J. Med. Chem. 57, 3595–3611 (2014).Article 
CAS 
PubMed 

Google Scholar 
Klenner, M. A., Pascali, G., Fraser, B. H. & Darwish, T. A. Kinetic isotope effects and synthetic strategies for deuterated carbon-11 and fluorine-18 labelled PET radiopharmaceuticals. Nuclear Med. Biol. 96-97, 112–147 (2021).Article 
CAS 

Google Scholar 
Fitzpatrick, P. F. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes. Biochim. Biophys. Acta 1854, 1746–1755 (2015).Article 
CAS 
PubMed 

Google Scholar 
Grimm, J. B. et al. General Method to Improve Fluorophores Using Deuterated Auxochromes. JACS Au 1, 690–696 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shao, M. et al. The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nat. Commun. 5, 3180 (2014).Article 
ADS 
PubMed 

Google Scholar 
Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).Article 
CAS 
PubMed 

Google Scholar 
Ling, Y. et al. The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design. Drug Des. Devel Ther. 15, 4289–4338 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kopf, S. et al. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem. Rev. 122, 6634–6718 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yu, R. P., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).Article 
ADS 
PubMed 

Google Scholar 
Koniarczyk, J. L., Hesk, D., Overgard, A., Davies, I. W. & McNally, A. A General Strategy for Site-Selective Incorporation of Deuterium and Tritium into Pyridines, Diazines, and Pharmaceuticals. J. Am. Chem. Soc. 140, 1990–1993 (2018).Article 
CAS 
PubMed 

Google Scholar 
Yang, H. et al. Site-Selective Nickel-Catalyzed Hydrogen Isotope Exchange in N-Heterocycles and Its Application to the Tritiation of Pharmaceuticals. ACS Catal. 8, 10210–10218 (2018).Article 
CAS 

Google Scholar 
Daniel-Bertrand, M. et al. Multiple Site Hydrogen Isotope Labelling of Pharmaceuticals. Angew. Chem. Int. Ed. 59, 21114–21120 (2020).Article 
CAS 

Google Scholar 
Sanoh, S., Tayama, Y., Sugihara, K., Kitamura, S. & Ohta, S. Significance of Aldehyde Oxidase during Drug Development: Effects on Drug Metabolism, Pharmacokinetics, Toxicity, and Efficacy. Drug Metab. Pharmacokinet. 30, 52–63 (2015).Article 
CAS 
PubMed 

Google Scholar 
Lenoir, H. H. C. & Janssen, C. C. M. Synthesis of 14C-Labelled 2-Aminopyridine. J. Label. Compd. Radiopharm. 24, 119–123 (1987).Article 
CAS 

Google Scholar 
Zhang, Y., Garnes, K. T. & Brown, D. Efficient Syntheses of Dual Radioisotope-Labelled PF-00217830, a D2-Partial Agonist for the Treatment of Schizophrenia Disorder. J. Chem. Res. 36, 351–355 (2012).Article 
CAS 

Google Scholar 
Belov, V. & Käfferlein, H. U. Total Synthesis of 13C2,15N-Imidacloprid with Three Stable Isotopes in the Pyridine Ring. J. Label. Compd. Radiopharm. 62, 126–131 (2019).Article 
CAS 

Google Scholar 
Noel, J. P. & Pichat, L. Synthese de L’Acide [Pyridinyl-2-(14C-2,6) Dithio]−3 Propanoique Reactif de Couplage Covalent. J. Label. Compd Radiopharm. 20, 1243–1256 (1983).Zhang, Y., Jian, Z. & Stolle, W. T. A Modified Approach to C-14-labeled 2-(3,4-Difluorophenoxy)−5-fluoronicotinic Acid and Other Halogen-Substituted Analogs. J. Label. Compd. Radiopharm. 54, 382–386 (2011).Article 
CAS 

Google Scholar 
Wang, T. S. T., Fawwaz, R. A. & Van Heertum, R. L. Preparation of 1-Methyl-4-[4-(7-chloro-4-quinolyl-[3-14C]-amino)benzoyl]piperazine. J. Label. Compd. Radiopharm. 36, 313–320 (1995).Ostrom, N. E., Ostrom, P. H. Nitrogen Nitrogenisotopesisotopes. In Geochemistry, 431–434 (Springer, 1998).Gómez-Vallejo, V., Gaja, V., Gona, K. B. & Llop, J. Nitrogen-13: Historical Review and Future Perspectives. J. Label. Compd. Radiopharm. 57, 244–254 (2014).Article 

Google Scholar 
Blower, J. E., Cousin, S. F. & Gee, A. D. Convergent Synthesis of 13N-Labelled Peptidic Structures Using Aqueous [13N]NH3. EJNMMI Radiopharm. Chem. 2, 16 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Miller, P. W., Long, N. J., Vilar, R. & Gee, A. D. Synthesis of 11C, 18F, 15O, and 13N Radiolabels for Positron Emission Tomography. Angew. Chem. Int. Ed. 47, 8998–9033 (2008).Article 
CAS 

Google Scholar 
Deng, X. et al. Chemistry for Positron Emission Tomography: Recent Advances in 11C-, 18F-, 13N-, and 15O-Labeling Reactions. Angew. Chem. Int. Ed. 58, 2580–2605 (2019).Article 
CAS 

Google Scholar 
Labiche, A., Malandain, A., Molins, M., Taran, F. & Audisio, D. Modern Strategies for Carbon Isotope Exchange. Angew. Chem. Int. Ed. 62, e202303535 (2023).Article 
CAS 

Google Scholar 
Malandain, A. et al. Carbon Dioxide Radical Anion by Photoinduced Equilibration between Formate Salts and [11C, 13C, 14C]CO2: Application to Carbon Isotope Radiolabeling. J. Am. Chem. Soc. 145, 16760–16770 (2023).Article 
CAS 
PubMed 

Google Scholar 
Feng, M. et al. Direct Carbon Isotope Exchange of Pharmaceuticals via Reversible Decyanation. J. Am. Chem. Soc. 143, 5659–5665 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mouhsine, B. et al. Platform for Multiple Isotope Labeling via Carbon–Sulfur Bond Exchange. J. Am. Chem. Soc. 146, 8343–8351 (2024).Article 
CAS 
PubMed 

Google Scholar 
Bartholomew, G. L. et al. 14N to 15N Isotopic Exchange of Nitrogen Heteroaromatics through Skeletal Editing. J. Am. Chem. Soc. 146, 2950–2958 (2024).Article 
CAS 
PubMed 

Google Scholar 
Nguyen, H. M. H. et al. Synthesis of 15N-Pyridines and Higher Mass Isotopologs via Zincke Imine Intermediates. J. Am. Chem. Soc. 146, 2944–2949 (2024).Article 
CAS 
PubMed 

Google Scholar 
Chandrashekhar, V. G., Baumann, W., Beller, M. & Jagadeesh, R. V. Nickel-Catalyzed Hydrogenative Coupling of Nitriles and Amines for General Amine Synthesis. Science 376, 1433–1441 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
He, J., Zhang, X., He, Q., Guo, H. & Fan, R. Synthesis of 15N-Labeled Heterocycles via the Cleavage of C–N Bonds of Anilines and Glycine-15N. Chem. Commun. 57, 5442–5445 (2021).Article 
CAS 

Google Scholar 
Dorsheimer, J. R. & Rovis, T. Late-Stage Isotopic Exchange of Primary Amines. J. Am. Chem. Soc. 145, 24367–24374 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chisholm, M. H., Delbridge, E. E., Kidwell, A. R. & Quinlan, K. B. Nitrogen Atom Exchange between Molybdenum, Tungsten and Carbon. A Convenient Method for N-15 Labeling. Chem. Commun. 126–127 https://doi.org/10.1039/B210286B (2003).Fier, P. S. & Maloney, K. M. NHC-Catalyzed Deamination of Primary Sulfonamides: A Platform for Late-Stage Functionalization. J. Am. Chem. Soc. 141, 1441–1445 (2019).Article 
CAS 
PubMed 

Google Scholar 
Oppenheimer, N. J., Matsunaga, T. O. & Kam, B. L. Synthesis of 15N-1 Nicotinamide. A General, One Step Synthesis of 15N Labeled Pyridine Heterocycles. J. Label. Compd. Radiopharm. 15, 191–196 (1978).Article 
CAS 

Google Scholar 
Shchepin, R. V., Barskiy, D. A., Mikhaylov, D. M. & Chekmenev, E. Y. Efficient Synthesis of Nicotinamide-1-15N for Ultrafast NMR Hyperpolarization Using Parahydrogen. Bioconj. Chem. 27, 878–882 (2016).Article 
CAS 

Google Scholar 
Chukanov, N. V. et al. 19F Hyperpolarization of 15N-3-19F-Pyridine via Signal Amplification by Reversible Exchange. J. Phys. Chem. C 122, 23002–23010 (2018).Article 
CAS 

Google Scholar 
Blahut, J., Štoček, J. R., Šála, M. & Dračínský, M. The Hydrogen Bond Continuum in Solid Isonicotinic Acid. J. Mag. Res. 345, 107334 (2022).Article 
CAS 

Google Scholar 
Chukanov, N. V. et al. A Versatile Synthetic Route to the Preparation of 15N Heterocycles. J. Label. Compd. Radiopharm. 62, 892–902 (2019).Article 
CAS 

Google Scholar 
Cheng, W.-C. & Kurth, M. J. The Zincke Reaction. A Review. Org. Prep. Proced. Int. 34, 585–608 (2002).Article 
CAS 

Google Scholar 
Becher, J. Synthesis and Reactions of Glutaconaldehyde and 5-Amino-2,4-pentadienals. Synthesis 1980, 589–612 (1980).Tolchin, Z. A. & Smith, J. M. 15NRORC: An Azine Labeling Protocol. J. Am. Chem. Soc. 146, 2939–2943 (2024).Article 
CAS 
PubMed 

Google Scholar 
Josephitis, C. M., Nguyen, H. M. H. & McNally, A. Late-Stage C–H Functionalization of Azines. Chem. Rev. 123, 7655–7691 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, F.-Y. & Jiao, L. Recent Developments in Transition-Metal-Free Functionalization and Derivatization Reactions of Pyridines. Synlett 32, 159–178 (2021).Article 
CAS 

Google Scholar 
Qin, Q., Cheng, Z. & Jiao, N. Recent Applications of Trifluoromethanesulfonic Anhydride in Organic Synthesis. Angew. Chem. Int. Ed. 62, e202215008 (2023).Article 
CAS 

Google Scholar 
Toscano, R. A. et al. Nucleophilic Reactions on 1-Trifluoromethanesulfonylpyridinium Trifluoromethanesulfonate (Triflypyridinium Triflate, TPT). Ring-Opening and “Unexpected” 1, 4-Dihydropyridine Reaction Products. Chem. Pharm. Bull. 45, 957–961 (1997).Article 
CAS 

Google Scholar 
Vanderwal, C. D. Reactivity and Synthesis Inspired by the Zincke Ring-Opening of Pyridines. J. Org. Chem. 76, 9555–9567 (2011).Article 
CAS 
PubMed 

Google Scholar 
Boyle, B. T., Levy, J. N., de Lescure, L., Paton, R. S. & McNally, A. Halogenation of the 3-Position of Pyridines through Zincke Imine Intermediates. Science 378, 773–779 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bartholomew, G. L., Carpaneto, F. & Sarpong, R. Skeletal Editing of Pyrimidines to Pyrazoles by Formal Carbon Deletion. J. Am. Chem. Soc. 144, 22309–22315 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Isin, E. M., Elmore, C. S., Nilsson, G. N., Thompson, R. A. & Weidolf, L. Use of Radiolabeled Compounds in Drug Metabolism and Pharmacokinetic Studies. Chem. Res. Toxicol. 25, 532–542 (2012).Article 
CAS 
PubMed 

Google Scholar 
Voges, R., Heys, J. R., Moenius, T. Preparation of Compounds Labeled with Tritium and Carbon-14 (John Wiley & Sons, 2009).Noel, J.-P. & Pichat, L. Synthese du Chloro-7 nitro-4 benzooxa-2 diazole-1,3 Uniformement Marque au Carbone-14: Chlorure DE NBD-14C (U) “Chloro − 4 nitro-7 benzofurazane 14C (U)”. J. Label. Compd. Radiopharm. 13, 87–96 (1977).Article 
CAS 

Google Scholar 
Pichat, L. & Baret, C. Une méthode simple de synthèse du benzene 14C6 et du styrolene 14C8. Tetrahedron 1, 269 (1957).Article 
CAS 

Google Scholar 
Haider, K. Synthese von 14C-Ringmarkierten Phenolischen Ligninspaltstücken und Ligninalkoholen aus Ba14CO3. J. Label. Compd. 2, 174–183 (1966).Article 
CAS 

Google Scholar 
Gregson, T. J., Herbert, J. M. & Row, E. C. Synthetic Approaches to Regiospecifically Mono- and Dilabelled Arenes. J. Label. Compd. Radiopharm. 54, 1–32 (2011).Article 
CAS 

Google Scholar 
Lynch, C. F., Downey, J. W., Zhang, Y., Hooker, J. M. & Levin, M. D. Core-Labeling (Radio) Synthesis of Phenols. Org. Lett. 25, 7230–7235 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Morofuji, T., Kinoshita, H. & Kano, N. Connecting a Carbonyl and a π-Conjugated Group Through a p-Phenylene Linker by (5+1) Benzene Ring Formation. Chem. Commun. 55, 8575–8578 (2019).Article 
CAS 

Google Scholar 
Štacková, L., Štacko, P. & Klán, P. Approach to a Substituted Heptamethine Cyanine Chain by the Ring Opening of Zincke Salts. J. Am. Chem. Soc. 141, 7155–7162 (2019).Article 
PubMed 

Google Scholar 
Usama, S. M. et al. Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging. J. Am. Chem. Soc. 145, 14647–14659 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wesener, J. R. & Günther, H. Spectral editing for 13C NMR signals of deuterated compounds. Org. Magn. Reson. 21, 433–435 (1983).Article 
CAS 

Google Scholar 
Fraenkel, G. & Burlant, W. Deuterium Isotope Effect in Proton—13C Coupling Constants. J. Chem. Phys. 42, 3724–3725 (2004).Article 
ADS 

Google Scholar 
Yu, T. et al. A Novel Synthetic Approach to Diarylmethylpiperazine Drugs. Lett. Org. Chem. 15, 485–490 (2018).Article 
ADS 
CAS 

Google Scholar 
Jin, Y. et al. Palladium-catalysed selective oxidative amination of olefins with Lewis basic amines. Nat. Chem. 14, 1118–1125 (2022).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles