Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping

Stahl, K., Graziadei, A., Dau, T., Brock, O. & Rappsilber, J. Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning. Nat. Biotechnol. 41, 1810–1819 (2023).Lenz, S. et al. Reliable identification of protein-protein interactions by crosslinking mass spectrometry. Nat. Commun. 12, 3564 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bond, M. R., Zhang, H., Vu, P. D. & Kohler, J. J. Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars. Nat. Protoc. 4, 1044–1063 (2009).Article 
CAS 
PubMed 

Google Scholar 
Cuthbert, T. J. et al. Covalent functionalization of polypropylene filters with diazirine–photosensitizer conjugates producing visible light driven virus inactivating materials. Sci. Rep. 11, 19029 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Manzi, L. et al. Carbene footprinting accurately maps binding sites in protein–ligand and protein–protein interactions. Nat. Commun. 7, 13288 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ahn, D.-S. et al. Mode-dependent fano resonances observed in the predissociation of diazirine in the S1 state. Angew. Chem. Int. Ed. 49, 1244–1247 (2010).Article 
CAS 

Google Scholar 
Park, Y. C., An, H., Lee, Y. S. & Baeck, K. K. Dynamic Symmetry Breaking Hidden in Fano Resonance of a Molecule: S1 State of Diazirine Using Quantum Wave Packet Propagation. J. Phys. Chem. A 120, 932–938 (2016).Article 
CAS 
PubMed 

Google Scholar 
Yamamoto, N. et al. Mechanism of Carbene Formation from the Excited States of Diazirine and Diazomethane: An MC-SCF Study. J. Am. Chem. Soc. 116, 2064–2074 (1994).Article 
CAS 

Google Scholar 
Procacci, B., Roy, S. S., Norcott, P., Turner, N. & Duckett, S. B. Unlocking a Diazirine Long-Lived Nuclear singlet state via photochemistry: NMR detection and lifetime of an unstabilized diazo-compound. J. Am. Chem. Soc. 140, 16855–16864 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ollevier, T. & Carreras, V. Emerging applications of aryl trifluoromethyl diazoalkanes and diazirines in synthetic transformations. ACS Org. Inorg. Au 2, 83–98 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. & Zhou, Q.-L. Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 366, 990–994 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lepage, M. L. et al. A broadly applicable cross-linker for aliphatic polymers containing C–H bonds. Science 366, 875–878 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Suchanek, M., Radzikowska, A. & Thiele, C. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat. Methods 2, 261–267 (2005).Article 
CAS 
PubMed 

Google Scholar 
Yang, T., Li, X.-M., Bao, X., Fung, Y. M. E. & Li, X. D. Photo-lysine captures proteins that bind lysine post-translational modifications. Nat. Chem. Biol. 12, 70–72 (2015).Article 
PubMed 

Google Scholar 
Tanaka, Y. & Kohler, J. J. Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130, 3278–3279 (2008).Article 
CAS 
PubMed 

Google Scholar 
Halloran, M. W. & Lumb, J. P. Recent applications of diazirines in chemical proteomics. Chem. Eur. J. 25, 4885–4898 (2019).Article 
CAS 
PubMed 

Google Scholar 
Das, J. Aliphatic diazirines as photoaffinity probes for proteins: recent developments. Chem. Rev. 111, 4405–4417 (2011).Article 
CAS 
PubMed 

Google Scholar 
Brunner, J., Senn, H. & Richards, F. M. 3-Trifluoromethyl-3-phenyldiazirine. A new carbene generating group for photolabeling reagents. J. Biol. Chem. 255, 3313–3318 (1980).Article 
CAS 
PubMed 

Google Scholar 
Musolino, S. F., Pei, Z., Bi, L., DiLabio, G. A. & Wulff, J. E. Structure-function relationships in aryl diazirines reveal optimal design features to maximize C-H insertion. Chem. Sci. 12, 12138–12148 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, M. et al. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat. Chem. Biol. 7, 671–677 (2011).Article 
CAS 
PubMed 

Google Scholar 
Li, X.-M., Huang, S. & Li, X. D. Photo-ANA enables profiling of host–bacteria protein interactions during infection. Nat. Chem. Biol. 19, 614–623 (2023).Article 
CAS 
PubMed 

Google Scholar 
Ruoho, A. E., Kiefer, H., Roeder, P. E. & Singer, S. J. The mechanism of photoaffinity labeling. Proc. Natl. Acad. Sci. USA 70, 2567–2571 (1973).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
O’Brien, J. G. K., Jemas, A., Asare-Okai, P. N., Am Ende, C. W. & Fox, J. M. Probing the mechanism of photoaffinity labeling by dialkyldiazirines through bioorthogonal capture of diazoalkanes. Org. Lett. 22, 9415–9420 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Dubinsky, L., Krom, B. P. & Meijler, M. M. Diazirine based photoaffinity labeling. Bioorg. Med. Chem. 20, 554–570 (2012).Article 
CAS 
PubMed 

Google Scholar 
Bayley, H. & Knowles, J. R. in Methods Enzymol. Vol. 46 69–114 (Academic Press, 1977).Müller, F., Graziadei, A. & Rappsilber, J. Quantitative photo-crosslinking mass spectrometry revealing protein structure response to environmental changes. Anal. Chem. 91, 9041–9048 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Belsom, A., Schneider, M., Fischer, L., Brock, O. & Rappsilber, J. Serum albumin domain structures in human blood serum by mass spectrometry and computational biology. Mol. Cell. Proteomics 15, 1105–1116 (2016).Article 
CAS 
PubMed 

Google Scholar 
Brodie, N. I., Makepeace, K. A. T., Petrotchenko, E. V. & Borchers, C. H. Isotopically-coded short-range hetero-bifunctional photo-reactive crosslinkers for studying protein structure. J. Proteomics 118, 12–20 (2015).Article 
CAS 
PubMed 

Google Scholar 
Petrotchenko, E. V., Nascimento, E. M., Witt, J. M. & Borchers, C. H. Determination of protein monoclonal–antibody epitopes by a combination of structural proteomics methods. J. Proteome Res. 22, 3096–3102 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gong, Z. et al. Visualizing the ensemble structures of protein complexes using chemical cross-linking coupled with mass spectrometry. Biophys. Rep. 1, 127–138 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhang, W. et al. SpotLink enables sensitive and precise identification of site nonspecific cross-links at the proteome scale. Brief. Bioinform. 23, https://doi.org/10.1093/bib/bbac316 (2022).Chen, Z.-L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat. Commun. 10, 3404 (2019).Götze, M. et al. StavroX—A software for analyzing crosslinked products in protein interaction studies. J. Am. Soc. Mass Spectrom. 23, 76–87 (2012).Article 
ADS 
PubMed 

Google Scholar 
Rinner, O. et al. Identification of cross-linked peptides from large sequence databases. Nat. Methods 5, 315–318 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Petrotchenko, E. V. & Borchers, C. H. Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom. Rev. 29, 862–876 (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Petrotchenko, E. V. & Borchers, C. H. Protein chemistry combined with mass spectrometry for protein structure determination. Chem. Rev. 122, 7488–7499 (2022).Article 
CAS 
PubMed 

Google Scholar 
Piersimoni, L., Kastritis, P. L., Arlt, C. & Sinz, A. Cross-linking mass spectrometry for investigating protein conformations and protein–protein interactions─A method for all seasons. Chem. Rev. 122, 7500–7531 (2021).Article 
PubMed 

Google Scholar 
Wang, J.-H. et al. Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers. Nat. Commun. 13, 1468 (2022).Jian-Hua, W. et al. Fast cross-linking by DOPA2 promotes the capturing of a stereospecific protein complex over nonspecific encounter complexes. Biophys. Rep. 8, 239–252 (2022).Article 

Google Scholar 
Kogut, M., Gong, Z., Tang, C. & Liwo, A. Pseudopotentials for coarse-grained cross-link-assisted modeling of protein structures. J. Comput. Chem. 42, 2054–2067 (2021).Article 
CAS 
PubMed 

Google Scholar 
Gong, Z., Ye, S.-X., Nie, Z.-F. & Tang, C. The conformational preference of chemical cross-linkers determines the cross-linking probability of reactive protein residues. J. Phys. Chem. B 124, 4446–4453 (2020).Article 
CAS 
PubMed 

Google Scholar 
Coffman, K. et al. Characterization of the raptor/4E-BP1 interaction by chemical cross-linking coupled with mass spectrometry Analysis *. J. Biol. Chem. 289, 4723–4734 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yan, X. et al. AI-empowered integrative structural characterization of m6A methyltransferase complex. Cell Res. 32, 1124–1127 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brodie, N. I., Petrotchenko, E. V. & Borchers, C. H. The novel isotopically coded short-range photo-reactive crosslinker 2,4,6-triazido-1,3,5-triazine (TATA) for studying protein structures. J. Proteomics 149, 69–76 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wei, G. et al. Conformational ensemble of native α-synuclein in solution as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. PLoS Comput. Biol. 15, https://doi.org/10.1371/journal.pcbi.1006859 (2019).Ziemianowicz, D. S., Bomgarden, R., Etienne, C. & Schriemer, D. C. Amino acid insertion frequencies arising from photoproducts generated using aliphatic diazirines. J. Am. Soc. Mass Spectrom. 28, 2011–2021 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
West, A. V. et al. Labeling preferences of diazirines with protein biomolecules. J. Am. Chem. Soc. 143, 6691–6700 (2021).Article 
CAS 
PubMed 

Google Scholar 
Iacobucci, C. et al. Carboxyl-photo-reactive MS-cleavable cross-linkers: unveiling a hidden aspect of diazirine-based reagents. Anal. Chem. 90, 2805–2809 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gutierrez, C. et al. Enabling photoactivated cross-linking mass spectrometric analysis of protein complexes by novel MS-cleavable cross-linkers. Mol. Cell. Proteomics 20, https://doi.org/10.1016/j.mcpro.2021.100084 (2021).Hogan, J. M. et al. Residue-level characterization of antibody binding epitopes using carbene chemical footprinting. Anal. Chem. 95, 3922–3931 (2023).Article 
CAS 
PubMed 

Google Scholar 
Hashimoto, M. & Hatanaka, Y. Recent progress in diazirine-based photoaffinity labeling. Eur. J. Org. Chem. 2008, 2513–2523 (2008).Article 

Google Scholar 
Zhang, Y., Burdzinski, G., Kubicki, J. & Platz, M. S. Direct observation of carbene and diazo formation from aryldiazirines by ultrafast infrared spectroscopy. J. Am. Chem. Soc. 130, 16134–16135 (2008).Article 
CAS 
PubMed 

Google Scholar 
Admasu, A. et al. A laser flash photolysis study of p-tolyl(trifluoromethyl)carbene. J. Chem. Soc. Perkin Trans. 2, 1093–1100 (1998).Article 

Google Scholar 
Toscano, J. P., Platz, M. S. & Nikolaev, V. Lifetimes of simple ketocarbenes. J. Am. Chem. Soc. 117, 4712–4713 (1995).Article 
CAS 

Google Scholar 
Mix, K. A., Aronoff, M. R. & Raines, R. T. Diazo compounds: versatile tools for chemical biology. ACS Chem. Biol. 11, 3233–3244 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cheng, S., Wu, Q., Xiao, H. & Chen, H. Online monitoring of enzymatic reactions using time-resolved desorption electrospray lonization mass spectrometry. Anal. Chem. 89, 2338–2344 (2017).Article 
CAS 
PubMed 

Google Scholar 
Fabry, D. C., Sugiono, E. & Rueping, M. Online monitoring and analysis for autonomous continuous flow self-optimizing reactor systems. React. Chem. Eng. 1, 129–133 (2016).Article 
CAS 

Google Scholar 
Attwood, P. V. & Geeves, M. A. Kinetics of an enzyme-catalyzed reaction measured by electrospray ionization mass spectrometry using a simple rapid mixing attachment. Anal. Biochem. 334, 382–389 (2004).Article 
CAS 
PubMed 

Google Scholar 
Beck, D. A. C., Alonso, D. O. V., Inoyama, D. & Daggett, V. The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins. Proc. Natl. Acad. Sci. USA 105, 12259–12264 (2008).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rosenberg, A. A., Yehishalom, N., Marx, A. & Bronstein, A. M. An amino-domino model described by a cross-peptide-bond Ramachandran plot defines amino acid pairs as local structural units. Proc. Natl. Acad. Sci. USA 120, e2301064120 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Belsom, A., Mudd, G., Giese, S., Auer, M. & Rappsilber, J. Complementary benzophenone cross-linking/mass spectrometry Photochemistry. Anal. Chem. 89, 5319–5324 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Iyer, L. K., Moorthy, B. S. & Topp, E. M. Photolytic cross-linking to probe protein–protein and protein–matrix interactions inlyophilized Powders. Mol. Pharm. 12, 3237–3249 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guangcan, S. et al. How to use open-pFind in deep proteomics data analysis?— A protocol for rigorous identification and quantitation of peptides and proteins from mass spectrometry data. Biophys. Rep. 7, 207–226 (2021).Article 

Google Scholar 
Gong, Z., Gu, X.-H., Guo, D.-C., Wang, J. & Tang, C. Protein structural ensembles visualized by solvent paramagnetic relaxation enhancement. Angew. Chem. Int. Ed. 56, 1002–1006 (2017).Article 
CAS 

Google Scholar 
Zhang, B. et al. Decoding protein dynamics in cells using chemical cross-linking and hierarchical analysis**. Angew. Chem. Int. Ed. 62, e202301345 (2023).Article 
CAS 

Google Scholar 
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).Pei, H.-H. et al. The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat. Commun. 11, 6418 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Walzthoeni, T. et al. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry. Nat. Methods 12, 1185–1190 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ding, Y.-H. et al. Modeling protein excited-state structures from “over-length” chemical cross-links. J. Biol. Chem. 292, 1187–1196 (2017).Article 
CAS 
PubMed 

Google Scholar 
Jin, Z. et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Campos-Olivas, R., Newman, J. L. & Summers, M. F. Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses11Edited by P. E. Wright. J. Mol. Biol. 296, 633–649 (2000).Article 
CAS 
PubMed 

Google Scholar 
Scott, D. J. et al. A novel ultra-stable, monomeric green fluorescent protein for direct volumetric imaging of whole organs using CLARITY. Sci. Rep. 8, 667 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Chen, X., Lee, B.-H., Finley, D. & Walters, K. J. Structure of proteasome ubiquitin receptor hRpn13 and Its activation by the scaffolding protein hRpn2. Mol. Cell 38, 404–415 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Z. et al. Structural basis for the recognition of K48-linked Ub chain by proteasomal receptor Rpn13. Cell Discovery 5, 19 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Bjorndahl, T. C., Andrew, L. C., Semenchenko, V. & Wishart, D. S. NMR Solution structures of the apo and peptide-inhibited human rhinovirus 3C protease (Serotype 14):  structural and dynamic comparison. Biochemistry 46, 12945–12958 (2007).Article 
CAS 
PubMed 

Google Scholar 
Mitternacht, S. FreeSASA: An open source C library for solvent accessible surface area calculations. F1000Res. 5, https://doi.org/10.12688/f1000research.7931.1 (2016).

Hot Topics

Related Articles