A multi-glycomic platform for the analysis of food carbohydrates

Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).Article 
CAS 
PubMed 

Google Scholar 
Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Wardman, J. F., Bains, R. K., Rahfeld, P. & Withers, S. G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol. 20, 542–556 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cronin, P., Joyce, S. A., O’Toole, P. W. & O’Connor, E. M. Dietary fibre modulates the gut microbiota. Nutrients 13, 1655 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dhingra, D., Michael, M., Rajput, H. & Patil, R. T. Dietary fibre in foods: a review. J. Food Sci. Technol. 49, 255–266 (2012).Article 
CAS 
PubMed 

Google Scholar 
Han, S. et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595, 415–420 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).Article 
CAS 
PubMed 

Google Scholar 
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).Article 
CAS 
PubMed 

Google Scholar 
Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Fischbach, M. A. & Sonnenburg, J. L. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10, 336–347 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Delannoy-Bruno, O. et al. An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome. Proc. Natl Acad. Sci. USA 119, e2123411119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Delannoy-Bruno, O. et al. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
O’Grady, J., O’Connor, E. M. & Shanahan, F. Review article: dietary fibre in the era of microbiome science. Aliment. Pharmacol. Ther. 49, 506–515 (2019).Article 
PubMed 

Google Scholar 
Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).Article 
CAS 
PubMed 

Google Scholar 
Barratt, M. J., Lebrilla, C., Shapiro, H. Y. & Gordon, J. I. The gut microbiota, food science, and human nutrition: a timely marriage. Cell Host Microbe 22, 134–141 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Amicucci, M. J., Nandita, E. & Lebrilla, C. B. Function without structures: the need for in-depth analysis of dietary carbohydrates. J. Agric. Food Chem. 67, 4418–4424 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wong, M., Xu, G. G., Park, D., Barboza, M. & Lebrilla, C. B. Intact glycosphingolipidomic analysis of the cell membrane during differentiation yields extensive glycan and lipid changes. Sci. Rep. 8, 10993 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Park, D. D. et al. Membrane glycomics reveal heterogeneity and quantitative distribution of cell surface sialylation. Chem. Sci. 9, 6271–6285 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chu, C. S. et al. Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics 9, 1939–1951 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barboza, M. et al. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol. Cell. Proteom. 11, M111.015248 (2012).Article 

Google Scholar 
Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480 (2006).Article 
CAS 
PubMed 

Google Scholar 
Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Q. Y., Xie, Y. X., Wong, M. R., Barboza, M. & Lebrilla, C. B. Comprehensive structural glycomic characterization of the glycocalyxes of cells and tissues. Nat. Protoc. 15, 2668–2704 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ehlers Cheang, S. et al. Combined alcohol soluble carbohydrate determination (CASCADE) of food. ACS Food Sci. Technol. 4, 554–560 (2024).Article 
CAS 

Google Scholar 
Amicucci, M. J. G. et al. A rapid-throughput adaptable method for determining the monosaccharide composition of polysaccharides. Int. J. Mass Spectrom. 438, 22–28 (2019).Article 
CAS 

Google Scholar 
Xu, G. G., Amicucci, M. J., Cheng, Z., Galermo, A. G. & Lebrilla, C. B. Revisiting monosaccharide analysis—quantitation of a comprehensive set of monosaccharides using dynamic multiple reaction monitoring. Analyst 143, 200–207 (2018).Article 
CAS 

Google Scholar 
Castillo, J. J. et al. The development of the Davis Food Glycopedia—a glycan encyclopedia of food. Nutrients 14, 1639 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Galermo, A. G. et al. Liquid chromatography-tandem mass spectrometry approach for determining glycosidic linkages. Anal. Chem. 90, 13073–13080 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Galermo, A. G., Nandita, E., Castillo, J. J., Amicucci, M. J. & Lebrilla, C. B. Development of an extensive linkage library for characterization of carbohydrates. Anal. Chem. 91, 13022–13031 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Amicucci, M. J. et al. A nonenzymatic method for cleaving polysaccharides to yield oligosaccharides for structural analysis. Nat. Commun. 11, 3963 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Castillo, J. J. et al. A multidimensional mass spectrometry-based workflow for de novo structural elucidation of oligosaccharides from polysaccharides. J. Am. Soc. Mass Spectrom. 32, 2175–2185 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nandita, E. et al. Polysaccharide identification through oligosaccharide fingerprinting. Carbohydr. Polym. 257, 117570 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pettolino, F. A., Walsh, C., Fincher, G. B. & Bacic, A. Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 7, 1590–1607 (2012).Article 
CAS 
PubMed 

Google Scholar 
Blakeney, A. B., Harris, P. J., Henry, R. J. & Stone, B. A. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 113, 291–299 (1983).Article 
CAS 

Google Scholar 
Doares, S. H., Albersheim, P. & Darvill, A. G. An improved method for the preparation of standards for glycosyl-linkage analysis of complex carbohydrates. Carbohydr. Res. 210, 311–317 (1991).Article 
CAS 

Google Scholar 
Anumula, K. R. & Taylor, P. B. A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal. Biochem. 203, 101–108 (1992).Article 
CAS 
PubMed 

Google Scholar 
Rohrer, J. S. High-performance anion-exchange chromatography with pulsed amperometric detection for the determination of oligosaccharides in foods and agricultural products. ACS Symp. Ser. Am. Chem. Soc. 849, 16–31 (2003).CAS 

Google Scholar 
Hanko, V. P. & Rohrer, J. S. Determination of carbohydrates, sugar alcohols, and glycols in cell cultures and fermentation broths using high-performance anion-exchange chromatography with pulsed amperometric detection. Anal. Biochem. 283, 192–199 (2000).Article 
CAS 
PubMed 

Google Scholar 
Carabetta, S. et al. High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC–PAD) and chemometrics for geographical and floral authentication of honeys from southern Italy (Calabria region). Foods 9, 1625 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ndukwe, I. E., Black, I., Heiss, C. & Azadi, P. Evaluating the utility of permethylated polysaccharide solution NMR data for characterization of insoluble plant cell wall polysaccharides. Anal. Chem. 92, 13221–13228 (2020).Article 
CAS 
PubMed 

Google Scholar 
Perez Garcia, M. et al. Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 989–1000 (2011).Article 
PubMed 

Google Scholar 
Zhao, W. C., Fernando, L. D., Kirui, A., Deligey, F. & Wang, T. Solid-state NMR of plant and fungal cell walls: a critical review. Solid State Nucl. Magn. Reson. 107, 101660 (2020).Article 
CAS 
PubMed 

Google Scholar 
Jalaludin, I. & Kim, J. Comparison of ultraviolet and refractive index detections in the HPLC analysis of sugars. Food Chem. 365, 130514 (2021).Article 
CAS 
PubMed 

Google Scholar 
Tsai, Y.-H., Tsai, C.-W. & Tipple, C. A. A validated method for the analysis of sugars and sugar alcohols related to explosives via liquid chromatography mass spectrometry (LC-MS) with post-column addition. Forensic Chem. 28, 100404 (2022).Article 
CAS 

Google Scholar 
Wang, H. et al. Simultaneous determination of fructose, glucose and sucrose by solid phase extraction-liquid chromatography-tandem mass spectrometry and its application to source and adulteration analysis of sucrose in tea. J. Food Compost. Anal. 96, 103730 (2021).Article 
CAS 

Google Scholar 
De Caro, C. A., Aichert, A. & Walter, C. M. Efficient, precise and fast water determination by the Karl Fischer titration. Food Control 12, 431–436 (2001).Article 

Google Scholar 
Wu, Z. Q., Serie, D., Xu, G. G. & Zou, J. PB-Net: automatic peak integration by sequential deep learning for multiple reaction monitoring. J. Proteom. 223, 103820 (2020).Article 
CAS 

Google Scholar 
Ranque, C. L. et al. Examination of carbohydrate products in feces reveals potential biomarkers distinguishing exclusive and nonexclusive breastfeeding practices in infants. J. Nutr. 150, 1051–1057 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Patnode, M. L. et al. Strain-level functional variation in the human gut microbiota based on bacterial binding to artificial food particles. Cell Host Microbe 29, 664–673.e5 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bacalzo, N. P. Jr et al. Quantitative bottom-up glycomic analysis of polysaccharides in food matrices using liquid chromatography–tandem mass spectrometry. Anal. Chem. 95, 1008–1015 (2023).PubMed 

Google Scholar 
Ehlers Cheang, S. A multi-glycomic platform for the analysis of food carbohydrates—monosaccharide, linkage and polysaccharide (FITDOG) composition analyses of different varieties of apple (figure 5) [dataset]. figshare https://doi.org/10.6084/m9.figshare.25529596.v1 (2024).

Hot Topics

Related Articles