Metabolism changes caused by glucose in normal and cancer human brain cell lines by Raman imaging and chemometric methods

Wolever TM, Miller JB. Sugars and blood glucose control. Am J Clin Nutr. 1995;62(1 Suppl):212S-221S; discussion 221S-227S. https://doi.org/10.1093/ajcn/62.1.212SRitter S. Monitoring and Maintenance of Brain Glucose Supply: Importance of Hindbrain Catecholamine Neurons in This Multifaceted Task. Published online 2017. http://europepmc.org/books/NBK453140Hantzidiamantis PJ, Lappin SL. Physiology, Glucose. StatPearls Publishing, Treasure Island (FL); 2023. http://europepmc.org/books/NBK545201Cutshaw, G. et al. The emerging role of raman spectroscopy as an omics approach for metabolic profiling and biomarker detection toward precision medicine. Chem Rev. 123(13), 8297–8346. https://doi.org/10.1021/acs.chemrev.2c00897 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hill, I. E. et al. Understanding radiation response and cell cycle variation in brain tumour cells using Raman spectroscopy. Analyst 148(11), 2594–2608. https://doi.org/10.1039/d3an00121k (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Milligan, K. et al. Raman spectroscopy and group and basis-restricted non negative matrix factorisation identifies radiation induced metabolic changes in human cancer cells. Sci Rep. 11(1), 1–11. https://doi.org/10.1038/s41598-021-83343-5 (2021).Article 
CAS 

Google Scholar 
Deng, X. et al. Monitor ionizing radiation-induced cellular responses with raman spectroscopy, non-negative matrix factorization, and non-negative least squares. Appl. Spectrosc. 74(6), 701–711. https://doi.org/10.1177/0003702820906221 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Giri, B. et al. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed. Pharmacother. 107, 306–328. https://doi.org/10.1016/j.biopha.2018.07.157 (2018).Article 
CAS 
PubMed 

Google Scholar 
Aronson, D. & Rayfield, E. J. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc. Diabetol. 1(1), 1. https://doi.org/10.1186/1475-2840-1-1 (2002).Article 
PubMed 
PubMed Central 

Google Scholar 
Park, C., Pagnini, F. & Langer, E. Glucose metabolism responds to perceived sugar intake more than actual sugar intake. Sci. Rep. 10(1), 1–8. https://doi.org/10.1038/s41598-020-72501-w (2020).Article 
CAS 

Google Scholar 
Stanhope, K. L. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit. Rev. Clin. Lab Sci. 53(1), 52–67. https://doi.org/10.3109/10408363.2015.1084990 (2016).Article 
CAS 
PubMed 

Google Scholar 
Pappe, C. L., Peters, B., Dommisch, H., Woelber, J. P. & Pivovarova-Ramich, O. Effects of reducing free sugars on 24-hour glucose profiles and glycemic variability in subjects without diabetes. Front. Nutrit. 2(10), 1213661. https://doi.org/10.3389/fnut.2023.1213661 (2023).Article 
CAS 

Google Scholar 
Gannon, M. C. & Nuttall, F. Q. Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition. Nutr. Metab. 3, 1–8. https://doi.org/10.1186/1743-7075-3-16 (2006).Article 
CAS 

Google Scholar 
Sieri, S. et al. Prospective study on the role of glucose metabolism in breast cancer occurrence. Int. J. cancer. 130(4), 921–929. https://doi.org/10.1002/ijc.26071 (2012).Article 
CAS 
PubMed 

Google Scholar 
Raza, U., Asif, M. R., Bin, R. A. & Sheikh, A. Hyperlipidemia and hyper glycaemia in Breast Cancer Patients is related to disease stage. Pakistan J. Med. Sci. 34(1), 209–214. https://doi.org/10.12669/pjms.341.14841 (2018).Article 

Google Scholar 
Contiero, P. et al. Fasting blood glucose and long-term prognosis of non-metastatic breast cancer: a cohort study. Breast Cancer Res. Treat. 138(3), 951–959. https://doi.org/10.1007/s10549-013-2519-9 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aranceta Bartrina, J. & Pérez, R. C. Association between sucrose intake and cancer: a review of the evidence. Nutr. Hosp. 28(Suppl 4), 95–105. https://doi.org/10.3305/nh.2013.28.sup4.6802 (2013).Article 
PubMed 

Google Scholar 
Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P. & Hu, F. B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121(11), 1356–1364. https://doi.org/10.1161/CIRCULATIONAHA.109.876185 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Riise, H. K. R. et al. Casual blood glucose and subsequent cardiovascular disease and all-cause mortality among 159 731 participants in Cohort of Norway (CONOR). BMJ Open Diabetes Res. Care https://doi.org/10.1136/bmjdrc-2020-001928 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Wittig, R. & Coy, J. F. The role of glucose metabolism and glucose-associated signalling in cancer. Perspect Medicin Chem. 1, 11773910700100006. https://doi.org/10.1177/1177391X0700100006 (2007).Article 

Google Scholar 
Sieri, S. et al. Prospective study on the role of glucose metabolism in breast cancer occurrence. Int J. Cancer. 130(4), 921–929. https://doi.org/10.1002/ijc.26071 (2012).Article 
CAS 
PubMed 

Google Scholar 
Poursaitidis I, Lamb RF. Metabolism in pancreatic cancer. Pancreat Cancer. Published online 2018:1379–1400. https://doi.org/10.1007/978-1-4939-7193-0_68Kellenberger, L. D. et al. The role of dysregulated glucose metabolism in epithelial ovarian cancer. J. Oncol. 2010(1), 514310. https://doi.org/10.1155/2010/514310 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cutruzzolà, F. et al. Glucose metabolism in the progression of prostate cancer. Front. Physiol. https://doi.org/10.3389/fphys.2017.00097 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Cai, X. J. et al. Emerging role of high glucose levels in cancer progression and therapy. Chin. J. Dent. Res. 25(1), 11–20. https://doi.org/10.3290/j.cjdr.b2752695 (2022).Article 
PubMed 

Google Scholar 
Zhan, Y.-S. et al. Glucose metabolism disorders in cancer patients in a Chinese population. Med. Oncol. 27(2), 177–184. https://doi.org/10.1007/s12032-009-9189-9 (2010).Article 
CAS 
PubMed 

Google Scholar 
Luo, J., Chen, Y.-J. & Chang, L.-J. Fasting blood glucose level and prognosis in non-small cell lung cancer (NSCLC) patients. Lung Cancer. 76(2), 242–247. https://doi.org/10.1016/j.lungcan.2011.10.019 (2012).Article 
PubMed 

Google Scholar 
Stewart, K. L. et al. Association of sugar intake with inflammation- and angiogenesis-related biomarkers in newly diagnosed colorectal cancer patients. Nutr Cancer. 74(5), 1636–1643. https://doi.org/10.1080/01635581.2021.1957133 (2022).Article 
CAS 
PubMed 

Google Scholar 
McCullough, M. L., Hodge, R. A., Campbell, P. T., Guinter, M. A. & Patel, A. V. Sugar- and artificially-sweetened beverages and cancer mortality in a large US prospective cohort. Cancer Epidemiol. Biomark. Prev a Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 31(10), 1907–1918. https://doi.org/10.1158/1055-9965.EPI-22-0392 (2022).Article 

Google Scholar 
Debras, C. et al. Total and added sugar intakes, sugar types, and cancer risk: Results from the prospective NutriNet-Santé cohort. Am. J. Clin. Nutr. 112(5), 1267–1279. https://doi.org/10.1093/ajcn/nqaa246 (2020).Article 
PubMed 

Google Scholar 
Laguna, J. C. et al. Simple sugar intake and cancer incidence, cancer mortality and all-cause mortality: a cohort study from the PREDIMED trial. Clin. Nutr. 40(10), 5269–5277. https://doi.org/10.1016/j.clnu.2021.07.031 (2021).Article 
CAS 
PubMed 

Google Scholar 
Epner, M., Yang, P., Wagner, R. W. & Cohen, L. Understanding the link between sugar and cancer: an examination of the preclinical and clinical evidence. Cancers (Basel) https://doi.org/10.3390/cancers14246042 (2022).Article 
PubMed 

Google Scholar 
Sun, S., Sun, Y., Rong, X. & Bai, L. High glucose promotes breast cancer proliferation and metastasis by impairing angiotensinogen expression. Biosci. Rep. https://doi.org/10.1042/BSR20190436 (2019).Liao, W.-C. et al. Blood glucose concentration and risk of pancreatic cancer: systematic review and dose-response meta-analysis. BMJ 350, g7371. https://doi.org/10.1136/bmj.g7371 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Gapstur, S. M. et al. Abnormal glucose metabolism and pancreatic cancer mortality. JAMA 283(19), 2552–2558. https://doi.org/10.1001/jama.283.19.2552 (2000).Article 
CAS 
PubMed 

Google Scholar 
Bielecka-Wajdman, A. M. et al. Glucose influences the response of glioblastoma cells to temozolomide and dexamethasone. Cancer Control. 29, 10732748221075468. https://doi.org/10.1177/10732748221075468 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Onikanni, S. A. et al. Cancer of the liver and its relationship with diabetes mellitus. Technol Cancer Res. Treat. 21, 15330338221119744. https://doi.org/10.1177/15330338221119743 (2022).Article 
CAS 

Google Scholar 
Sripetchwandee, J., Chattipakorn, N. & Chattipakorn, S. C. Links between obesity-induced brain insulin resistance, brain mitochondrial dysfunction, and dementia. Front. Endocrinol. (Lausanne) 9, 1–16. https://doi.org/10.3389/fendo.2018.00496 (2018).Article 

Google Scholar 
Himsworth, H. P. The syndrome of diabetes mellitus and its causes. Lancet 253(6551), 465–473. https://doi.org/10.1016/S0140-6736(49)90797-7 (1949).Article 

Google Scholar 
Kumar, V., Kim, S.-H. & Bishayee, K. Dysfunctional glucose metabolism in Alzheimer’s disease onset and potential pharmacological interventions. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23179540 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, J. et al. Brain glucose activated mri contrast agent for early diagnosis of Alzheimer’s disease. Anal. Chem. 94(46), 16213–16221. https://doi.org/10.1021/acs.analchem.2c03765 (2022).Article 
CAS 
PubMed 

Google Scholar 
Dewanjee, S. et al. Altered glucose metabolism in Alzheimer’s disease: role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med. 193, 134–157. https://doi.org/10.1016/j.freeradbiomed.2022.09.032 (2022).Article 
CAS 
PubMed 

Google Scholar 
Duran-Aniotz, C. & Hetz, C. Glucose metabolism: a sweet relief of ALZHEIMER’S disease. Curr Biol. 26(17), R806–R809. https://doi.org/10.1016/j.cub.2016.07.060 (2016).Article 
CAS 
PubMed 

Google Scholar 
Yoon, J. H. et al. How can insulin resistance cause alzheimer’s disease?. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24043506 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Williamson, R., McNeilly, A. & Sutherland, C. Insulin resistance in the brain: an old-age or new-age problem?. Biochem. Pharmacol. 84(6), 737–745. https://doi.org/10.1016/j.bcp.2012.05.007 (2012).Article 
CAS 
PubMed 

Google Scholar 
Huang, C.-C. et al. Diabetes mellitus and the risk of Alzheimer’s disease: a nationwide population-based study. PLoS ONE 9(1), e87095. https://doi.org/10.1371/journal.pone.0087095 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, E. J. et al. Glucose metabolism in early onset versus late onset Alzheimer’s disease: an SPM analysis of 120 patients. Brain 128(8), 1790–1801. https://doi.org/10.1093/brain/awh539 (2005).Article 
CAS 
PubMed 

Google Scholar 
Hammond, T. C. & Lin, A.-L. Glucose metabolism is a better marker for predicting clinical alzheimer’s disease than amyloid or tau. J. Cell Immunol. 4(1), 15–18 (2022).PubMed 
PubMed Central 

Google Scholar 
Zhang, X. et al. Midlife lipid and glucose levels are associated with Alzheimer’s disease. Alzheimer’s Dement. 19(1), 181–193. https://doi.org/10.1002/alz.12641 (2023).Article 
CAS 

Google Scholar 
Barhwal, K., Das, S. K., Kumar, A., Hota, S. K. & Srivastava, R. B. Insulin receptor A and Sirtuin 1 synergistically improve learning and spatial memory following chronic salidroside treatment during hypoxia. J. Neurochem. 135(2), 332–346. https://doi.org/10.1111/jnc.13225 (2015).Article 
CAS 
PubMed 

Google Scholar 
Beirami, E., Oryan, S., Seyedhosseini Tamijani, S. M., Ahmadiani, A. & Dargahi, L. Intranasal insulin treatment restores cognitive deficits and insulin signaling impairment induced by repeated methamphetamine exposure. J. Cell Biochem. 119(2), 2345–2355. https://doi.org/10.1002/jcb.26398 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pratchayasakul, W. et al. Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci. 88(13–14), 619–627. https://doi.org/10.1016/j.lfs.2011.02.003 (2011).Article 
CAS 
PubMed 

Google Scholar 
Pipatpiboon, N., Pratchayasakul, W., Chattipakorn, N. & Chattipakorn, S. C. PPARγ agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology 153(1), 329–338. https://doi.org/10.1210/en.2011-1502 (2012).Article 
CAS 
PubMed 

Google Scholar 
Pintana, H., Apaijai, N., Pratchayasakul, W., Chattipakorn, N. & Chattipakorn, S. C. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci. 91(11–12), 409–414. https://doi.org/10.1016/j.lfs.2012.08.017 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kopeć, M., Beton, K. & Jarczewska, K. A. H. Hyperglycemia and cancer in human lung carcinoma by means of Raman spectroscopy and imaging. Sci. Rep. 12, 18561. https://doi.org/10.1038/s41598-022-21483-y (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kopec, M. & Beton-Mysur, K. The role of glucose and fructose on lipid droplet metabolism in human normal bronchial and cancer lung cells by Raman spectroscopy. Chem. Phys. Lipids 2023(259), 105375. https://doi.org/10.1016/j.chemphyslip.2023.105375 (2023).Article 
CAS 

Google Scholar 
Kopeć, M., Beton-Mysur, K. & Abramczyk, H. Biochemical changes in lipid and protein metabolism caused by mannose-Raman spectroscopy studies. Analyst https://doi.org/10.1039/d4an00128a (2024).Article 
PubMed 

Google Scholar 
Halina, A. & Beata Brozek-Pluska, M. K. Double face of cytochrome c in cancers by Raman imaging. Sci. Rep. https://doi.org/10.1038/s41598-022-04803-0 (2022).Article 

Google Scholar 
Beton-Mysur, K. & Brożek-PÅ‚uska, B. A new modality for cholesterol impact tracking in colon cancer development – Raman imaging, fluorescence and AFM studies combined with chemometric analysis. Anal. Methods 15(39), 5199–5217. https://doi.org/10.1039/d3ay01040f (2023).Article 
CAS 
PubMed 

Google Scholar 
Kopec, M., Beton-Mysur, K. & Abramczyk, H. Raman imaging and chemometric methods in human normal bronchial and cancer lung cells: Raman biomarkers of lipid reprogramming. Chem. Phys. Lipids. 257(July), 105339. https://doi.org/10.1016/j.chemphyslip.2023.105339 (2023).Article 
CAS 
PubMed 

Google Scholar 
Brozek-Pluska, B. Statistics assisted analysis of Raman spectra and imaging of human colon cell lines – Label free, spectroscopic diagnostics of colorectal cancer. J. Mol. Struct. 1218, 128524. https://doi.org/10.1016/j.molstruc.2020.128524 (2020).Article 
CAS 

Google Scholar 
Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42(5), 493–541. https://doi.org/10.1080/05704920701551530 (2007).Article 
ADS 
CAS 

Google Scholar 
Sciences N, Chemistry A, Centre I, Kingdom U. BBA – M olecular Cell Research Raman microscopy reveals how cell inflammation activates glucose and lipid metabolism A lek sa n d ra B o re k -D o ro s z a , A n n a P ie c za ra b , c , J a go d a O rle a n s k a a , c , K r z y s z to f B r z o z o w s . 2023;(August).Ralhan, I., Chang, C.-L., Lippincott-Schwartz, J. & Ioannou, M. S. Lipid droplets in the nervous system. J. Cell Biol. https://doi.org/10.1083/jcb.202102136 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhao, X., Zhang, S., Sanders, A. R. & Duan, J. Brain lipids and lipid droplet dysregulation in alzheimer’s disease and neuropsychiatric disorders. Complex Psych. 9(1–4), 154–171. https://doi.org/10.1159/000535131 (2023).Article 

Google Scholar 
Seyfried, T. N. et al. Metabolic management of brain cancer. Biochim. Biophys. Acta – Bioenerg. 1807(6), 577–594. https://doi.org/10.1016/j.bbabio.2010.08.009 (2011).Article 
CAS 

Google Scholar 
Abramczyk H, Surmacki JM, Brozek-Pluska B, Kopec M. Revision of Commonly Accepted Warburg Mechanism of Cancer Development : Redox-Sensitive Mitochondrial Cytochromes in Breast and Brain Cancers by Raman Imaging. Cancers (Basel). Published online 2021.Xu, S., Zhang, X. & Liu, P. Lipid droplet proteins and metabolic diseases. Biochim. Biophys. Acta – Mol Basis Dis. 1864(5), 1968–1983. https://doi.org/10.1016/j.bbadis.2017.07.019 (2018).Article 
CAS 
PubMed 

Google Scholar 
DiNicolantonio, J. J., O’Keefe, J. H. & Wilson, W. L. Sugar addiction: is it real? A narrative review. Br. J. Sports Med. 52(14), 910–913. https://doi.org/10.1136/bjsports-2017-097971 (2018).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles