+Emerging organic electrode materials for sustainable batteries

Fan, E. et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 120, 7020–7063 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lee, S. et al. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv. Mater. 30, 1704682 (2018).Article 

Google Scholar 
Williams, D. L., Byrne, J. J. & Driscoll, J. S. A high energy density lithium/dichloroisocyanuric acid battery system. J. Electrochem. Soc. 116, 2 (1969).Article 
CAS 

Google Scholar 
Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J.Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH)x. J. Chem. Soc. Chem. Commun. 578–580 (1977).Jia, X., Yu, G., Shao, L., Wang, C. & Wallace, G. G. Tunable conducting polymers: toward sustainable and versatile batteries. ACS Sustain. Chem. Eng. 7, 14321–14340 (2019).Article 
CAS 

Google Scholar 
Novák, P., Müller, K., Santhanam, K. S. V. & Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207–282 (1997).Article 
PubMed 

Google Scholar 
Tirado, J. Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the- art and future prospects. Mater. Sci. Eng. R. Rep. 40, 103–136 (2003).Article 

Google Scholar 
Croguennec, L. & Palacin, M. R. Recent achievements on inorganic electrode materials for Lithium-Ion batteries. J. Am. Chem. Soc. 137, 3140–3156 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wang, H. et al. Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs). J. Mater. Chem. A 8, 11906–11922 (2020).Article 
CAS 

Google Scholar 
Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 467–470 (2018).Article 
CAS 
PubMed 

Google Scholar 
Meng, Q., Cai, K., Chen, Y. & Chen, L. Research progress on conducting polymer-based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017).Article 
CAS 

Google Scholar 
Férey, G. et al. Mixed‐valence Li/Fe‐based metal-organic frameworks with both reversible Redox and sorption properties. Angew. Chem. Int. Ed. 46, 3259–3263 (2007).Article 

Google Scholar 
Mutahir, S. et al. Pristine Co (BDC)TED0.5 a pillared-layer biligand Cobalt-based metal-organic framework as improved anode material for lithium-ion batteries. Appl. Mater. Today 21, 100813 (2020).Article 

Google Scholar 
Kaveevivitchai, W. & Jacobson, A. J. Exploration of vanadium benzene dicarboxylate as a cathode for rechargeable lithium batteries. J. Power Sources 278, 265–273 (2015).Article 
CAS 

Google Scholar 
Zeng, Z. et al. Nanostructured Fe3O4@ C as anode material for lithium-ion batteries. J. Power Sources 248, 15–21 (2014).Article 
CAS 

Google Scholar 
Zhou, X. et al. Metal-organic frameworks derived okra-like SnO2 encapsulated in nitrogen-doped graphene for lithium-ion battery. ACS Appl. Mater. Interfaces 9, 14309–14318 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Porous anatase TiO2 constructed from a metal-organic framework for advanced lithium-ion battery anodes. J. Mater. Chem. A. 2, 12571–12575 (2014).Article 
CAS 

Google Scholar 
Zhang, G. et al. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord. Chem. Rev. 439, 213915 (2021).Article 
CAS 

Google Scholar 
Mehek, R. et al. Metal-organic framework-based electrode materials for lithium-ion batteries: A review. RSC Adv. 11, 29247–29266 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gannett, C. N. et al. Organic electrode materials for fast-rate, high-power battery applications. Mater. Rep.: Energy 1, 100008 (2021).CAS 

Google Scholar 
Kathiresan, M. et al. Viologens: a versatile organic molecule for energy storage applications. J. Mater. Chem. A 9, 27215–27233 (2021).Article 
CAS 

Google Scholar 
Li, L. et al. Molecular engineering of aromatic imides for organic secondary batteries. Small 17, 2005752 (2021).Article 
CAS 

Google Scholar 
Shi, R. et al. Challenges and advances of organic electrode materials for sustainable secondary batteries. Exploration 2, 20220066 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
MacInnes, D. et al. Organic batteries: reversible n- and p- type electrochemical doping of polyacetylene, (CH) x. J. Chem. Soc., Chem. Commun. 7, 317–318 (1981).Article 

Google Scholar 
Nakahara, K. et al. Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351–354 (2002).Article 
CAS 

Google Scholar 
Chen, H. et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. Chem. Sus. Chem. 1, 348–355 (2008).Article 
CAS 

Google Scholar 
Matsunaga, T., Kubota, T., Sugimoto, T. & Satoh, M. High-performance lithium secondary batteries using cathode active materials of triquinoxalinylenes exhibiting six electron migration. Chem. Lett. 40, 750–752 (2011).Article 
CAS 

Google Scholar 
Wu, H., Cao, Y., Geng, L. & Wang, C. In situ formation of stable interfacial coating for high-performance lithium metal anodes. Chem. Mater. 29, 3572–3579 (2017).Article 
CAS 

Google Scholar 
Zhao, Q. et al. Sodium-Ion storage mechanism in triquinoxalinylene and a strategy for improving electrode stability. Energy Fuels 34, 5099–5105 (2020).Article 
CAS 

Google Scholar 
Wu, Z. et al. Molecular and morphological engineering of organic electrode materials for electrochemical energy storage. EER 5, 26 (2022).CAS 

Google Scholar 
Lu, Y., Zhang, Q., Li, L., Niu, Z. & Chen, J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 4, 2786–2813 (2018).Article 
CAS 

Google Scholar 
Zou, Q., Wang, W., Wang, A., Yu, Z. & Yuan, K. Preparation of the tetrahydro hexaquinone as a novel cathode material for rechargeable lithium batteries. Mater. Lett. 117, 290–293 (2014).Article 
CAS 

Google Scholar 
Zhang, H., Deng, Q., Zhou, A., Liu, X. & Li, J. Porous Li2C8H4O4 coated with N-doped carbon by using CVD as an anode material for Li-ion batteries. J. Mater. Chem. A. 2, 5696–5702 (2014).Article 
CAS 

Google Scholar 
Yuan, C. et al. Nanoengineered ultralight organic cathode based on aromatic carbonyl compound/graphene aerogel for green lithium and sodium-ion batteries. ACS Sustain. Chem. Eng. 6, 8392–8399 (2018).Article 
CAS 

Google Scholar 
Banerjee, A., Khossossi, N., Luo, W. & Ahuja, R. Promise and reality of organic electrodes from materials design and charge storage perspective. J. Mater. Chem. A 10, 15215–15234 (2022).Article 
CAS 

Google Scholar 
Reddy, T. B. Linden’s handbook of batteries. (Mc-Graw-Hill Education, 2011).Jouhara, A. et al. Fusing Thiadiazole and Terephthalate: A concept to promote the electrochemical performance of conjugated dicarboxylates. ChemSusChem 16, e202300286 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chen, D. et al. A rigid naphthalene diimide triangle for organic rechargeable lithium-ion batteries. J. Adv. Mater. 27, 2907–2912 (2015).Article 
CAS 

Google Scholar 
Häupler, B., Wild, A. & Schubert, U. S. Carbonyls: robust organic materials for secondary batteries. Adv. Energy Mater. 5, 14022034 (2015).Article 

Google Scholar 
Son, E. J., Kim, J. H., Kim, K. & Park, C. B. Quinone and its derivatives for energy harvesting and storage materials. J. Mater. Chem. A. 4, 11179–11202 (2016).Article 
CAS 

Google Scholar 
Shimizu, A. et al. Nitrogen‐containing polycyclic quinones as cathode materials for Lithium‐ion batteries with increased voltage. Energy Technol. 2, 155–158 (2014).Article 
CAS 

Google Scholar 
Yao, M. et al. Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries. Sci. Rep. 4, 3650 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, H. et al. High energy organic cathode for sodium rechargeable batteries. J. Mater. Chem. 27, 7258–7264 (2015).Article 
CAS 

Google Scholar 
Luo, W., Allen, M., Raju, V. & Ji, X. An organic pigment as a high-performance cathode for Sodium-Ion batteries. Adv. Energy Mater. 4, 1400554 (2014).Article 

Google Scholar 
Yokoji, T., Matsubara, H. & Satoh, M. Rechargeable organic Lithium-ion batteries using electron-deficient benzoquinones as positive-electrode materials with high discharge voltages. J. Mater. Chem. A. 2, 19347–19354 (2014).Article 
CAS 

Google Scholar 
Wan, W. et al. Tuning the electrochemical performances of Anthraquinone organic cathode materials for Li-ion batteries through the Sulfonic Sodium functional group. RSC Adv. 4, 19878–19882 (2014).Article 
CAS 

Google Scholar 
Yang, G. et al. Advanced organic electrode materials for aqueous rechargeable batteries. Sci. China Chem. 67, 1–28 (2023).CAS 

Google Scholar 
Rodríguez-Pérez, I. A. et al. Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion. J. Am. Chem. Soc. 139, 13031–13037 (2017).Article 
PubMed 

Google Scholar 
Chen, Y. et al. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18, 205–211 (2015).Article 
CAS 

Google Scholar 
Han, X. Y., Chang, C. X., Yuan, L. J., Sun, T. L. & Sun, J. Aromatic carbonyl derivative polymers as high‐performance Li‐ion storage materials. J. Adv. Mater. 19, 1616–1621 (2007).Article 
CAS 

Google Scholar 
Song, Z. & Zhou, H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301 (2013).Article 
CAS 

Google Scholar 
Yu, P. et al. Flexible Zn‐ion batteries: recent progress and challenges. Small 15, 1804760 (2019).Article 

Google Scholar 
Z. Song, In Redox Polymers for Energy and Nanomedicine ch. 6, 198–244 (Mecerreyes, D. & Casado, N., R. Soc. Chem, 2020).Baymuratova, G. R. et al. Synthesis and investigation of a new organic electrode material based on condensation product of triquinoyl with 1, 2, 4, 5-tetraaminobenzene. JEAC 889, 115234 (2021).CAS 

Google Scholar 
Ramezankhani, V. et al. High-capacity potassium-ion batteries using new rigid backbone quinone-based polymer electrode materials. J. Power Sources 562, 232744 (2023).Article 
CAS 

Google Scholar 
Wilkinson, D. et al. A quinone-based cathode material for high-performance organic lithium and sodium batteries. ACS Appl. Energy Mater. 4, 12084–12090 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, L. et al. Realizing high-performance of quinone-based cathode via multiple active centres for aqueous zinc ion batteries. J. Power Sources 591, 233896 (2024).Article 
CAS 

Google Scholar 
Zhang, M., Zhou, W. & Huang, W. Characterization methods of organic electrode materials. J. Energy Chem. 57, 291–303 (2021).Article 
CAS 

Google Scholar 
Heiska, J., Nisula, M. & Karppinen, M. Organic electrode materials with solid-state battery technology. J. Mater. Chem. A. 7, 18735–18758 (2019).Article 
CAS 

Google Scholar 
Son, M. et al. Improving the thermodynamic energy efficiency of battery electrode deionization using flow-through electrodes. Environ. Sci. Technol. 54, 3628–3635 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mohamed, M. G. et al. Ultrastable porous organic polymers containing Thianthrene and Pyrene units as organic electrode materials for supercapacitors. ACS Appl. Energy Mater. 5, 6442–6452 (2022).Article 
CAS 

Google Scholar 
Renault, S., Mihali, V. A., Edström, K. & Brandell, D. Stability of organic Na-Ion battery electrode materials: the case of Disodium Pyromellitic Diimidate. Electrochem. Commun. 45, 52–55 (2014).Article 
CAS 

Google Scholar 
Peterson, B. M., Gannett, C. N., Melecio-Zambrano, L., Fors, B. P. & Abruña, H. Effect of structural ordering on the charge storage mechanism of P-type organic electrode materials. ACS Appl. Mater. Interfaces 13, 7135–7141 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kim, T. S., Lim, J. E., Oh, M. S. & Kim, J. K. Carbon conductor- and binder-free organic electrode for flexible organic rechargeable batteries with high energy density. J. Power Sources 361, 15–20 (2017).Article 
CAS 

Google Scholar 
Lee, M. L. et al. Li4Ti5O12 -coated graphite anode materials for lithium-ion batteries. Electrochim. Acta 112, 529–534 (2013).Article 
CAS 

Google Scholar 
Khan, F. M. N. U., Rasul, M. G., Sayem, A. S. M. & Mandal, N. K. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J. Energy Storage. 71, 108033 (2023).Article 

Google Scholar 
Chatterjee, D. P. & Nandi, A. K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A. 9, 15880–15918 (2021).Article 
CAS 

Google Scholar 
Ruan, P., Liang, S., Lu, B., Fan, H. J. & Zhou, J. Design strategies for high‐energy‐density aqueous zinc batteries. Angew. Chem. 134, e202200598 (2022).Article 

Google Scholar 
Ghosh, S., Majhi, J., Sharma, S., Priya, K. & Bandyopadhyay, A. A review on the development of electron and ion conductive polymer hydrogels and their composites for flexible and smart supercapacitors. J. Energy Storage. 74, 109423 (2023).Article 

Google Scholar 
Goujon, N., Casado, N., Patil, N., Marcilla, R. & Mecerreyes, D. Organic batteries based on just Redox Polymers. Prog. Polym. Sci. 122, 101449 (2021).Article 
CAS 

Google Scholar 
Oh, J. et al. Improving the cycling performance of Lithium-ion battery Si/Graphite anodes using a soluble polyimide binder. ACS Omega 2, 8438–8444 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Poiot, P. et al. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020).Article 

Google Scholar 
Jiao, X. et al. Conductive additives for improving the rate capability of cathode materials in secondary lithium batteries. ACS Appl. Energy Mater. 6, 2855–2862 (2023).Article 
CAS 

Google Scholar 
Vlad, A., Singh, N., Galande, C. & Ajayan, P. M. Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5, 1–53 (2015).Article 

Google Scholar 
Schulze, M. C. & Neale, N. R. Half-Cell cumulative efficiency forecasts Full-Cell capacity retention in Lithium-Ion batteries. ACS Energy Lett. 6, 1082–1086 (2021).Article 
CAS 

Google Scholar 
Cougnon, C. Exploring the interdependence between the coulombic, voltage and energy efficiencies. Electrochem. Comm. 120, 106832 (2020).Article 
CAS 

Google Scholar 
Liang, P. et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode. Desalination 420, 63–69 (2017).Article 
CAS 

Google Scholar 
Rodrigues, F. A. & de Lemos, M. J. S. Discharge effectiveness of thermal energy storage systems. Appl. Therm. Eng. 209, 118232 (2022).Article 

Google Scholar 
Iqbal, R. et al. A high energy density self-supported and bendable organic electrode for redox supercapacitors with a wide voltage window. Chin. J. Polym. Sci. 38, 522–530 (2020).Article 
CAS 

Google Scholar 
Heard, D. M. & Lennox, A. J. J. Electrode materials in modern organic electrochemistry. Angew. Chem. 132, 19026–19044 (2020).Article 

Google Scholar 
Schon, T. B., McAllister, B. T., Li, P. F. & Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016).Article 
CAS 
PubMed 

Google Scholar 
Shi, J. L., Xiang, S. Q., Su, D. J., He, R. & Zhao, L. B. Revealing practical specific capacity and carbonyl utilization of multi-carbonyl compounds for organic cathode materials. Phys. Chem. Chem. Phys. 23, 13159–13169 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chae, M. S., Nimkar, A., Shpigel, N., Gofer, Y. & Aurbach, D. High performance aqueous and nonaqueous Ca-Ion cathodes based on fused-ring aromatic carbonyl compounds. ACS Energy Lett. 6, 2659–2665 (2021).Article 
CAS 

Google Scholar 
Chen, Z. et al. A poorly soluble organic electrode material for high energy density lithium primary batteries based on a multi-electron reduction. Chem. Comm. 57, 10791–10794 (2021).Article 
CAS 
PubMed 

Google Scholar 
Raj, M. R., Kim, N. & Lee, G. A Perylene-based aromatic polyimide with multiple carbonyls enabling high-capacity and stable organic lithium and sodium ion batteries. Sustain. Energy Fuels. 5, 175–187 (2021).Article 
CAS 

Google Scholar 
Labasan, K. B. et al. Dicyanotriphenylamine-based polyimides as high-performance electrodes for next generation organic lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 17467–17477 (2021).Article 
CAS 
PubMed 

Google Scholar 
Li, K., Xu, S., Han, D., Si, Z. & Wang, H. G. Carbonyl- Rich Poly (Pyrene-4,5,9,10-Tetraone Sulfide) as anode materials for high-performance Li and Na-Ion batteries. Chem. – Asian J. 16, 1973–1978 (2021).Article 
CAS 
PubMed 

Google Scholar 
Huangfu, C. et al. Strong oxidation induced Quinone Rich Dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Storage Mater. 43, 120–129 (2021).Article 

Google Scholar 
Jagdale, S. D., Rao, C. R. K., Bhosale, S. V. & Bhosale, S. An Azo functionalized anthraquinone as organic electrode materials for efficient pseudocapacitors with excellent cycling stability. J. Energy Storage 80, 110323 (2024).Article 

Google Scholar 
Huang, L. et al. Trilithium salt of Tetrahydroxyanthraquinone: A high-voltage and stable organic cathode material for rechargeable lithium metal and lithium-ion batteries. Chem. Eng. J. 481, 148447 (2023).Article 

Google Scholar 
Li, S., Wang, Y., Zhang, X., Lv, X. & Wang H. G. Conjugated microporous polymers with multiple redox-active sites as anode and cathode materials for symmetric all-organic lithium-ion batteries. Mater. Today Commun. 38, (2024).Wang, J. et al. Design and synthesis of П-conjugated aromatic heterocyclic materials with dual active sites and ultra-high-rate performance for aqueous Zinc-organic batteries. J. Colloid Interface Sci. 653, 1103–1111 (2024).Article 
CAS 
PubMed 

Google Scholar 
Zheng, S. et al. Conjugation regulates the cathode/electrolyte interface in all-solid-state lithium-ion batteries. J. Mater. Chem. A. 12, 3967–3976 (2024).Article 
CAS 

Google Scholar 
Wang, L. et al. Copper and conjugated carbonyls of metal–organic polymers as dual redox centers for Na storage. Chem. Sci. 15, 2133–2140 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Singh, S., Ghorai, M. K. & Kar, K. K. Exploration of Cobalt (II) modification in Phenanthroline-based conjugated organic polymer towards Trifunctional electrocatalysis. J. Mater. Chem. A. 12, 2400–2412 (2024).Article 
CAS 

Google Scholar 
Meftahi, A., Shabani-Nooshabadi, M. & Reisi-Vanani, A. Introducing Go/CuI nanostructure as active electrode matter for supercapacitors: a comparative investigation within two eletrolytes. J. Energy Storage 63, 107077 (2023).Article 

Google Scholar 
Qiu, C., Jiang, L., Gao, Y. & Sheng, L. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. Mater. Des. 230, 111952 (2023).Article 
CAS 

Google Scholar 
Ruidas, S. et al. Imine-linked π−conjugated covalent organic framework as an efficient electrode material for Pseudocapacitive energy storage. ACS Appl.Energy Mater. 7, 2872–2880 (2024).Article 
CAS 

Google Scholar 
Vadehra, G. S., Maloney, R. P., Garcia-Garibay, M. A. & Dunn, B. Naphthalene Diimide based materials with adjustable redox potentials: evaluation for organic lithium-ion batteries. J. Mater. Chem. 26, 7151–7157 (2014).Article 
CAS 

Google Scholar 
Wang, S. et al. All organic sodium‐ion batteries with Na4C8H2O6. Angew. Chem. Int. Ed. 53, 5892–5896 (2014).Article 
CAS 

Google Scholar 
Liao, Y., Wang, H., Zhu, M. & Thomas, A. Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from Buchwald–Hartwig coupling. J. Adv. Mater. 30, 1705710 (2018).Article 

Google Scholar 
Hao, L., Li, X. & Zhi, L. Carbonaceous electrode materials for supercapacitors. J. Adv. Mater. 25, 3899–3904 (2013).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles