CryoDRGN-ET: deep reconstructing generative networks for visualizing dynamic biomolecules inside cells

Oikonomou, C. M. & Jensen, G. J. Cellular electron cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86, 873–896 (2017).Article 
CAS 
PubMed 

Google Scholar 
Galaz-Montoya, J. G. & Ludtke, S. J. The advent of structural biology in situ by single particle cryo-electron tomography. Biophys. Rep. 3, 17–35 (2017).Article 
CAS 
PubMed 

Google Scholar 
Nogales, E. & Mahamid, J. Bridging structural and cell biology with cryo-electron microscopy. Nature 628, 47–56 (2024).Article 
CAS 
PubMed 

Google Scholar 
Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat. Methods 18, 186–193 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zivanov, J. et al. A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0. Elife 11, e83724 (2022).Himes, B. A. & Zhang, P. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 15, 955–961 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, M. et al. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat. Methods 16, 1161–1168 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wan, W., Khavnekar, S., Wagner, J., Erdmann, P. & Baumeister, W. STOPGAP: a software package for subtomogram averaging and refinement. Microsc. Microanal. 26, 2516 (2020).Article 

Google Scholar 
Khavnekar, S. et al. Optimizing Cryo-FIB lamellas for sub-5Å in situ structural biology Preprint at bioRxiv https://doi.org/10.1101/2022.06.16.496417 (2022).Chen, M. et al. A complete data processing workflow for cryo-et and subtomogram averaging. Nat. Methods 16, 1161–1168 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiménez de la Morena, J. et al. ScipionTomo: towards cryo-electron tomography software integration, reproducibility, and validation. J. Struct. Biol. 214, 107872 (2022).Article 
PubMed 

Google Scholar 
Balyschew, N. et al. Streamlined structure determination by cryo-electron tomography and subtomogram averaging using tomobear. Nat. Commun. https://doi.org/10.1038/s41467-023-42085-w (2023).Liu, H.-F. et al. nextPYP: a comprehensive and scalable platform for characterizing protein variability in situ using single-particle cryo-electron tomography. Nat. Methods 20, 1909–1919 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Harastani, M., Eltsov, M., Leforestier, A. & Jonic, S. HEMNMA-3D: cryo electron tomography method based on normal mode analysis to study continuous conformational variability of macromolecular complexes. Front. Mol. Biosci. 8, 663121 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Harastani, M., Eltsov, M., Leforestier, A. & Jonic, S. TomoFlow: analysis of continuous conformational variability of macromolecules in cryogenic subtomograms based on 3D dense optical flow. J. Mol. Biol. 434, 167381 (2022).Article 
CAS 
PubMed 

Google Scholar 
Erdmann, P. S. et al. In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli. Nat. Commun. 12, 5364 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xue, L. et al. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 610, 205–211 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoffmann, P. C. et al. Structures of the eukaryotic ribosome and its translational states in situ. Nat. Commun. 13, 7435 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xing, H. et al. Translation dynamics in human cells visualized at high resolution reveal cancer drug action. Science 381, 70–75 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Punjani, A. & Fleet, D. J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat. Methods 20, 860–870 (2023).Chen, M. & Ludtke, S. J. Deep learning-based mixed-dimensional gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 18, 930–936 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xie, Y.et al. Neural fields in visual computing and beyond. Preprint at https://arxiv.org/abs/2111.11426 (2021).Bartesaghi, A., Lecumberry, F., Sapiro, G. & Subramaniam, S. Protein secondary structure determination by constrained single-particle cryo-electron tomography. Structure 20, 2003–2013 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. Elife 4, e06980 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).Montesano-Roditis, L., Glitz, D. G., Traut, R. R. & Stewart, P. L. Cryo-electron microscopic localization of protein L7/L12 within the escherichia coli 70 S ribosome by difference mapping and nanogold labeling. J. Biol. Chem. 276, 14117–14123 (2001).Article 
CAS 
PubMed 

Google Scholar 
Kater, L. et al. Partially inserted nascent chain unzips the lateral gate of the Sec translocon. EMBO Rep. 20, e48191 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261–271 (2009).Article 
CAS 
PubMed 

Google Scholar 
Shao, S. et al. Decoding mammalian ribosome-mRNA states by translational GTPase complexes. Cell 167, 1229–1240 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Choi, A. K., Wong, E. C., Lee, K.-M. & Wong, K.-B. Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes. Toxins 7, 638–647 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ranjan, N. et al. Yeast translation elongation factor eEF3 promotes late stages of tRNA translocation. EMBO J. 40, e106449 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lomakin, I. B., Xiong, Y. & Steitz, T. A. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 129, 319–332 (2007).Article 
PubMed 

Google Scholar 
Leibundgut, M., Jenni, S., Frick, C. & Ban, N. Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase. Science 316, 288–290 (2007).Article 
CAS 
PubMed 

Google Scholar 
Jenni, S. et al. Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 316, 254–261 (2007).Article 
CAS 
PubMed 

Google Scholar 
Singh, K. et al. Discovery of a regulatory subunit of the yeast fatty acid synthase. Cell 180, 1130–1143 (2020).Article 

Google Scholar 
Gipson, P. et al. Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy. Proc. Natl Acad. Sci. USA 107, 9164–9169 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zivanov, J. et al. New tools for automated high-resolution cryo-em structure determination in RELION-3. Elife 7, e42166 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Powell, B. M. & Davis, J. H. Learning structural heterogeneity from cryo-electron sub-tomograms with tomodrgn. Nat. Methods https://doi.org/10.1038/s41592-024-02210-z (2024).Hagen, W. J., Wan, W. & Briggs, J. A. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-em using a 2.6 Å reconstruction of rotavirus VP6. Elife 4, e06980 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. CryoDRGN2: ab initio neural reconstruction of 3D protein structures from real cryo-EM images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 4066–4075 (2021).Levy, A., Wetzstein, G., Martel, J. N., Poitevin, F. & Zhong, E. Amortized inference for heterogeneous reconstruction in cryo-EM. Adv. Neural Inf. Process. Sys. 35, 13038–13049 (2022).
Google Scholar 
Bharat, T. A., Russo, C. J., Löwe, J., Passmore, L. A. & Scheres, S. H. Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23, 1743–1753 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://arxiv.org/abs/1312.6114 (2022).Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. Preprint at https://arxiv.org/abs/1603.04467 (2015).Sindelar, C. V. & Grigorieff, N. Optimal noise reduction in 3d reconstructions of single particles using a volume-normalized filter. J. Struct. Biol. 180, 26–38 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).Article 
CAS 
PubMed 

Google Scholar 
Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3d structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-em structure determination. Nat. Methods 14, 290–296 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zheng, S. et al. AreTomo: An integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. 6, 100068 (2022).CAS 

Google Scholar 
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J 478, 4169–4185 (2021).Article 
CAS 
PubMed 

Google Scholar 
Khavnekar, S., Erdmann, P. & Wan, W. TOMOMAN: streamlining cryo-electron tomography and subtomogram averaging workflows using TOMOgram MANager. Microsc. Microanal. 29, 1020 (2023).Bai, X.-c, Fernandez, I. S., McMullan, G. & Scheres, S. H. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. Elife 2, e00461 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).Article 
PubMed 

Google Scholar 
Turoňová, B., Schur, F. K., Wan, W. & Briggs, J. A. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Å. J. Struct. Biol. 199, 187–195 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Wan, W., Khavnekar, S. & Wagner, J. STOPGAP, an open-source package for template matching, subtomogram alignment, and classification. Acta Crystallogr. D Struct. Biol. 80, 336–349–12 (2024).Pellegrino, S. et al. Structural insights into the role of diphthamide on elongation factor 2 in mRNA reading-frame maintenance. J. Mol. Biol. 430, 2677–2687 (2018).Article 
CAS 
PubMed 

Google Scholar 
Himes, B. & Grigorieff, N. Cryo-TEM simulations of amorphous radiation-sensitive samples using multislice wave propagation. IUCrJ 8, 943–953 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Voorhees, R. M., Fernández, I. S., Scheres, S. H. & Hegde, R. S. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157, 1632–1643 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Buschauer, R. et al. The Ccr4-Not complex monitors the translating ribosome for codon optimality. Science 368, eaay6912 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).Article 
CAS 
PubMed 

Google Scholar 
Svidritskiy, E., Brilot, A. F., San Koh, C., Grigorieff, N. & Korostelev, A. A. Structures of yeast 80S ribosome-tRNA complexes in the rotated and nonrotated conformations. Structure 22, 1210–1218 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Joppe, M. et al. The resolution revolution in cryoem requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase. IUCrJ 7, 220–227 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lamm, L. et al. MemBrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography. Preprint at bioRxiv https://doi.org/10.1101/2024.01.05.574336 (2024).Pintilie, G. D., Zhang, J., Goddard, T. D., Chiu, W. & Gossard, D. C. Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J. Struct. Biol. 170, 427–438 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rangan, R. et al. Data for ‘CryoDRGN-ET: Deep reconstructing generative networks for visualizing dynamic biomolecules inside cells’. Zenodo https://doi.org/10.5281/zenodo.11399378 (2024).

Hot Topics

Related Articles