Selective nitrogen insertion into aryl alkanes

Trowbridge, A. et al. New strategies for the transition-metal catalyzed synthesis of aliphatic amines. Chem. Rev. 120, 2613–2692 (2020).Article 
CAS 
PubMed 

Google Scholar 
Murugesan, K. et al. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem. Soc. Rev. 49, 6273–6328 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ma, D. et al. Synthesis of 7,8-Disubstituted Benzolactam-V8 and its binding to protein Kinase C. Bioorg. Med. Chem. Lett. 11, 99–101 (2021).Article 

Google Scholar 
Duan, Z. et al. Antitumor activity of Mianserin (a Tetracyclic Antidepressant) primarily driven by the inhibition of SLC1A5‑Mediated glutamine transport. Investig. New Drugs 40, 977–989 (2022).Article 
CAS 

Google Scholar 
Ghali, J. K. et al. Tolvaptan. Nat. Rev. Drug. Discov. 8, 611–612 (2009).Article 
CAS 
PubMed 

Google Scholar 
Dai, X. et al. Metabolomics-based study on the discriminative classification models and toxicological mechanism of estazolam fatal intoxication. Metabolites 13, 567–587 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pritchett, B. P., Kikuchi, J., Numajiri, Y. & Stoltz, B. M. Enantioselective Pd-catalyzed allylic alkylation reactions of Dihydropyrido[1,2-a]indolone substrates: efficient syntheses of (-)-Goniomitine, (+)-Aspidospermidine, and (-)-Quebrachamine. Angew. Chem. Int. Ed. 55, 13529–13532 (2016).Article 
CAS 

Google Scholar 
Miksa, B. et al. Chlorambucil labelled with the Phenosafranin Scaffold as a new chemotherapeutic for imaging and cancer treatment. Colloids Surf. B 159, 820–828 (2017).Article 
CAS 

Google Scholar 
Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, 244–252 (2019).Article 

Google Scholar 
Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lee, Y. et al. Chemistry and biology of macrolide antiparasitic agents. J. Med. Chem. 54, 2792–2804 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stevenson, P. J. Cyclic arylamines. Sci. Synth. 31b, 1885–1938 (2007).CAS 

Google Scholar 
Ciganek, E. Electrophilic amination of carbanions, enolates, and their surrogates. Org. React. 72, 1–366 (2008).
Google Scholar 
Peplow, M. ‘Almost magical’: chemists can now move single atoms in and out of a molecule’s core. Nature 618, 21–24 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Cheng, Q. et al. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat. Chem. https://doi.org/10.1038/s41557-023-01428-2 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, S. F. et al. Wavelength-dependent reactivity, and expanded reactivity of N-Aryl Azacycle photomediated ring contractions. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.3c13982 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, F.-P. et al. Ring expansion of indene by photoredox-enabled functionalized carbon-atom insertion. Nat. Catal. https://doi.org/10.1038/s41929-023-01089-x (2024).Article 
PubMed 

Google Scholar 
Schmitt, H. L. et al. Regiodivergent ring-expansion of oxindoles to quinolinones. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.3c12119 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Wright, B. A. et al. Skeletal editing approach to bridge-functionalized Bicyclo[1.1.1]pentanes from Azabicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 145, 10960–10966 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bartholomew, G. L., Carpaneto, F. & Sarpong, R. Skeletal editing of pyrimidines to pyrazoles by formal carbon deletion. J. Am. Chem. Soc. 144, 22309–22315 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hyland, E. E., Kelly, P. Q., McKillop, A. M., Dherange, B. D. & Levin, M. D. Unified access to pyrimidines and quinazolines enabled by N-N cleaving carbon atom insertion. J. Am. Chem. Soc. 144, 19258–19264 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lyu, H., Kevlishvili, I., Yu, X., Liu, P. & Dong, G. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science 372, 175–182 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qin, H. et al. N-atom deletion in nitrogen heterocycles. Angew. Chem. Int. Ed. 60, 20678–20683 (2021).Article 
CAS 

Google Scholar 
Hui, C., Brieger, L., Strohmann, C. & Antonchick, A. P. Stereoselective synthesis of cyclobutanes by contraction of pyrrolidines. J. Am. Chem. Soc. 143, 18864–18870 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dherange, B. D., Kelly, P. Q., Liles, J. P., Sigman, M. S. & Levin, M. D. Carbon atom insertion into pyrroles and indoles promoted by chlorodiazirines. J. Am. Chem. Soc. 143, 11337–11344 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Mykura, R. et al. Synthesis of polysubstituted azepanes by dearomative ring expansion of nitroarenes. Nat. Chem. 16, 771–779 (2024).Woo, J., Stein, C., Christian, A. H. & Levin, M. D. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature 623, 77–82 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Li, H. et al. Rhodium-catalyzed intramolecular nitrogen atom insertion into arene rings. J. Am. Chem. Soc. 145, 17570–17576 (2023).Article 
CAS 
PubMed 

Google Scholar 
Liu, S. & Cheng, X. Insertion of ammonia into alkenes to build aromatic N-heterocycles. Nat. Commun. 13, 425–432 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Patel, S. C. & Burns, N. Z. Conversion of aryl azides to aminopyridines. J. Am. Chem. Soc. 144, 17797–17802 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, J., Lu, H., He, Y., Jing, C. & Wei, H. Cobalt-catalyzed nitrogen atom insertion in arylcycloalkenes. J. Am. Chem. Soc. 144, 22433–22439 (2022).Article 
CAS 
PubMed 

Google Scholar 
Becker, O. M. et al. An integrated in silico 3D model-driven discovery of a novel, potent, and selective Amidosulfonamide 5-HT1A Agonist (PRX-00023) for the treatment of anxiety and depression. J. Med. Chem. 49, 3116–3135 (2006).Article 
CAS 
PubMed 

Google Scholar 
Ekins, S., Balakin, K. V., Savchuk, N. & Ivanenkov, Y. Insights for human ether-a-Go-Go-Related gene potassium channel inhibition using recursive partitioning and Kohonen and Sammon mapping techniques. J. Med. Chem. 49, 5059–5071 (2006).Article 
CAS 
PubMed 

Google Scholar 
Kärkäs, M. D. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).Article 
PubMed 

Google Scholar 
Zhao, Y. & Xia, W. Recent advances in radical-based C-N bond formation via photo-/electrochemistry. Chem. Soc. Rev. 47, 2591–2608 (2018).Article 
CAS 
PubMed 

Google Scholar 
Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 41, 1534–1544 (2018).Article 

Google Scholar 
Surry, D. S. & Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47, 6338–6361 (2008).Article 
CAS 

Google Scholar 
Hartwig, J. F., Shekhar, S., Shen, Q. & Barrios-Landeros, F. Synthesis of anilines. ChemInform 38, 455–536 (2007).Article 

Google Scholar 
Shin, K., Kim, H. & Chang, S. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination. Acc. Chem. Res. 48, 1040–1052 (2015).Article 
CAS 
PubMed 

Google Scholar 
Paudyal, M. P. et al. Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Park, Y., Park, K. T., Kim, J. G. & Chang, S. Mechanistic studies on the Rh(III)-mediated amido transfer process leading to robust C–H amination with a new type of amidating reagent. J. Am. Chem. Soc. 137, 4534–4542 (2015).Article 
CAS 
PubMed 

Google Scholar 
Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective Arene C-H amination via photoredox catalysis. Science 349, 1326–1330 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Shrestha, R., Mukherjee, P., Tan, Y., Litman, Z. C. & Hartwig, J. F. Sterically controlled, palladium-catalyzed intermolecular amination of arenes. J. Am. Chem. Soc. 135, 8480–8483 (2013).Article 
CAS 
PubMed 

Google Scholar 
Tsang, W. C. P., Zheng, N. & Buchwald, S. L. Combined C-H functionalization/C-N bond formation route to carbazoles. J. Am. Chem. Soc. 127, 14560–14561 (2005).Article 
CAS 
PubMed 

Google Scholar 
Liang, Y.-F. et al. Carbon-carbon bond cleavage for late-stage functionalization. Chem. Rev. 123, 12313–12370 (2023).Article 
CAS 
PubMed 

Google Scholar 
Song, F., Guo, T., Wang, B.-Q. & Shi, Z.-J. Catalytic activations of unstrained C-C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kim, D.-S., Park, W.-J. & Jun, C.-H. Metal-organic cooperative catalysis in C-H and C-C bond activation. Chem. Rev. 117, 8977–9015 (2017).Article 
CAS 
PubMed 

Google Scholar 
Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C-C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017).Article 
CAS 
PubMed 

Google Scholar 
He, Z., Moreno, J. A., Swain, M., Wu, J. & Kwon, O. Aminodealkenylation: ozonolysis and copper catalysis convert C(sp3)-C(sp2) Bonds to C(sp3)-N bonds. Science 381, 877–886 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lv, X.-Y., Abrams, R. & Martin, R. Copper-Catalyzed C(sp3)-amination of Ketone-derived Dihydroquinazolinones by Aromatization-driven C-C bond scission. Angew. Chem. Int. Ed. 62, e202217386 (2023).Article 
CAS 

Google Scholar 
Anugu, R. R. & Falck, J. R. Site-selective amination and/or nitrilation via metal-free C(sp2)-C(sp3) cleavage of benzylic and allylic alcohols. Chem. Sci. 13, 4821–4827 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liang, Y., Zhang, X. & MacMillan, D. W. C. Decarboxylative sp3 C-N coupling via dual copper and photoredox catalysis. Nature 559, 83–88 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mao, R., Frey, A., Balon, J. & Hu, X. Decarboxylative C(sp3)-N cross-coupling via synergetic photoredox and copper catalysis. Nat. Catal. 1, 120–126 (2018).Article 
CAS 

Google Scholar 
Liu, J. et al. Nitromethane as a nitrogen donor in Schmidt-type formation of amides and nitriles. Science 367, 281–285 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Liu, J. et al. From alkylarenes to anilines via site-directed carbon-carbon amination. Nat. Chem. 11, 71–77 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Qin, C., Zhou, W., Chen, F., Ou, Y. & Jiao, N. Iron-catalyzed C-H and C-C bond cleavage: a direct approach to amides from simple hydrocarbons. Angew. Chem. Int. Ed. 50, 12595–12599 (2011).Article 
CAS 

Google Scholar 
Niu, C. et al. Selective ring-opening amination of isochromans and tetrahydroisoquinolines. Angew. Chem. Int. Ed. 63, https://doi.org/10.1002/anie.202401318 (2024).Vischer, H. F. et al. Identification of Novel Allosteric Nonpeptidergic Iinhibitors of the Human Cytomegalovirus-encoded Chemokine Receptor US28. Bioorg. Med. Chem. 18, 675–688 (2010).Article 
CAS 
PubMed 

Google Scholar 
Prices refer to Combi-Blocks. The website of the Combi-Blocks is: https://www.combi-blocks.com.Wang, T. et al. Hydroxylamine-mediated C-C Amination via an Aza-hock Rearrangement. Nat. Commun. 12, 7029–7039 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sandvoß, A. & Wahl, J. M. From cycloalkanols to heterocycles via nitrogen insertion. Org. Lett. 25, 5795–5799 (2023).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles