Catalytic reduction of toxic dyes over nickel oxide nanoparticles supported on CMK-3 catalyst

Games, L. M. & Hites, R. A. Composition, treatment efficiency, and environmental significance of dye manufacturing plant effluents. Anal. Chem. 49(9), 1433–1440 (1977).Article 
CAS 

Google Scholar 
El Naga, A. O. A., Shaban, S. A. & El Kady, F. Y. Metal organic framework-derived nitrogen-doped nanoporous carbon as an efficient adsorbent for methyl orange removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 93, 363–373 (2018).Article 

Google Scholar 
Melati, I., Rahayu, G. & Henny, C. The recent status of synthetic dyes mycoremediation: A review. In IOP Conference Series: Earth and Environmental Science, Vol. 1062, No. 1, 012029 (IOP Publishing, 2022).Moradi, O., Pudineh, A. & Sedaghat, S. Synthesis and characterization Agar/GO/ZnO NPs nanocomposite for removal of methylene blue and methyl orange as azo dyes from food industrial effluents. Food Chem. Toxicol. 169, 113412 (2022).Article 
CAS 

Google Scholar 
Nabilah, B., Purnomo, A. S., Prasetyoko, D. & Rohmah, A. A. Methylene Blue biodecolorization and biodegradation by immobilized mixed cultures of Trichoderma viride and Ralstonia pickettii into SA-PVA-Bentonite matrix. Arab. J. Chem. 16(8), 104940 (2023).Article 
CAS 

Google Scholar 
Ding, H. et al. Regeneration of methylene blue-saturated biochar by synergistic effect of H2O2 desorption and peroxymonosulfate degradation. Chemosphere 316, 137766 (2023).Article 
CAS 

Google Scholar 
Bekhit, M., Abo El Naga, A. O., El Saied, M. & Abdel Maksoud, M. I. Radiation-induced synthesis of copper sulfide nanotubes with improved catalytic and antibacterial activities. Environ. Sci. Pollut. Res. 28, 44467–44478 (2021).Article 
CAS 

Google Scholar 
Ihaddaden, S., Aberkane, D., Boukerroui, A. & Robert, D. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J. Water Process Eng. 49, 102952 (2022).Article 

Google Scholar 
Nayak, H. & Padhi, B. Degradation of methylene blue using Ca-doped LaMnO3 as a photocatalyst under visible light irradiation. Results Chem. 6, 101104 (2023).Article 
CAS 

Google Scholar 
Abay, A. K., Chen, X. & Kuo, D. H. Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4-nitrophenol, methyl blue, and rhodamine-B organic pollutants. New J. Chem. 41(13), 5628–5638 (2017).Article 
CAS 

Google Scholar 
Mekewi, M. A., Darwish, A. S., Amin, M. S., Eshaq, G. & Bourazan, H. A. Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation. Egypt. J. Petrol. 25(2), 269–279 (2016).Article 

Google Scholar 
Qi, L., Zhang, K., Qin, W. & Hu, Y. Highly efficient flow-through catalytic reduction of methylene blue using silver nanoparticles functionalized cotton. Chem. Eng. J. 388, 124252 (2020).Article 
CAS 

Google Scholar 
Begum, R. et al. Chemical reduction of methylene blue in the presence of nanocatalysts: A critical review. Rev. Chem. Eng. 36(6), 749–770 (2020).Article 
CAS 

Google Scholar 
Kumar, R., Praveen, P., Sharma, A., Parmar, R., Dahiya, S., & Kishor, N. To study the effect of dopant NiO concentration and duration of calcinations on structural and optical properties of MgO-NiO nanocomposites. In AIP Conference Proceedings, Vol. 1728, No. 1 (AIP Publishing, 2016).‏Pai, S. H. S., Mondal, A., Ajitha, B. & Reddy, Y. A. K. Effect of calcination temperature on NiO for hydrogen gas sensor performance. Int. J. Hydrogen Energy 50, 928–941 (2023).Article 
ADS 

Google Scholar 
Muduli, S., Pati, S. K., Pani, T. K. & Martha, S. K. One pot synthesis of carbon decorated NiO nanorods as cathode materials for high-performance asymmetric supercapacitors. J. Energy Storage 66, 107339 (2023).Article 

Google Scholar 
Wang, X. et al. Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem. 21(11), 3571–3573 (2011).Article 
CAS 

Google Scholar 
Yousaf, S. et al. Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route. Ceram. Int. 46(3), 3750–3758 (2020).Article 
CAS 

Google Scholar 
Ichiyanagi, Y. et al. Magnetic properties of NiO nanoparticles. Phys. B Condens. Matter 329, 862–863 (2003).Article 
ADS 

Google Scholar 
Aguilar, C. M. et al. Improving ozonation to remove carbamazepine through ozone-assisted catalysis using different NiO concentrations. Environ. Sci. Pollut. Res. 27, 22184–22194 (2020).Article 
CAS 

Google Scholar 
Silva, V. D., Simões, T. A., Grilo, J. P., Medeiros, E. S. & Macedo, D. A. Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis. J. Mater. Sci. 55, 6648–6659 (2020).Article 
ADS 
CAS 

Google Scholar 
Nobakht, A. R. et al. CO2 methanation over NiO catalysts supported on CaO–Al2O3: Effect of CaO: Al2O3 molar ratio and nickel loading. Int. J. Hydrogen Energy 48, 38664–38675 (2023).Article 
ADS 

Google Scholar 
Li, J., Yan, R., Xiao, B., Liang, D. T. & Du, L. Development of nano-NiO/Al2O3 catalyst to be used for tar removal in biomass gasification. Environ. Sci. Technol. 42(16), 6224–6229 (2008).Article 
ADS 
CAS 

Google Scholar 
Pakulska, M. M., Grgicak, C. M. & Giorgi, J. B. The effect of metal and support particle size on NiO/CeO2 and NiO/ZrO2 catalyst activity in complete methane oxidation. Appl. Catal. A Gen. 332(1), 124–129 (2007).Article 
CAS 

Google Scholar 
Ibupoto, Z. H. et al. MoSx@ NiO composite nanostructures: An advanced nonprecious catalyst for hydrogen evolution reaction in alkaline media. Adv. Funct. Mater. 29(7), 1807562 (2019).Article 

Google Scholar 
Song, S. et al. Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Appl. Catal. B Environ. 217, 115–124 (2017).Article 
CAS 

Google Scholar 
Psohlavcová, K. Přínos nanotechnologických inovací v managementu zánětu (Doctoral dissertation, Masarykova univerzita, Přírodovědecká fakulta).‏ (2017).Amirache, L. et al. Cobalt sulfide-reduced graphene oxide: An efficient catalyst for the degradation of rhodamine B and pentachlorophenol using peroxymonosulfate. J. Environ. Chem. Eng. 9(5), 106018 (2021).Article 
CAS 

Google Scholar 
Refaat, Z. et al. Mesoporous carbon nitride supported MgO for enhanced CO2 capture. Environ. Sci. Pollut. Res. 30(18), 53817–53832 (2023).Article 
CAS 

Google Scholar 
Lei, C. et al. Bio-photoelectrochemical degradation, and photocatalysis process by the fabrication of copper oxide/zinc cadmium sulfide heterojunction nanocomposites: Mechanism, microbial community and antifungal analysis. Chemosphere 308, 136375 (2022).Article 
CAS 

Google Scholar 
Cui, X., Shi, J., Zhang, L., Ruan, M. & Gao, J. PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation. Carbon 47(1), 186–194 (2009).Article 
CAS 

Google Scholar 
Yang, X. et al. Nanofabrication of Ni-incorporated three-dimensional ordered mesoporous carbon for catalytic methane decomposition. J. Environ. Chem. Eng. 10(3), 107451 (2022).Article 
CAS 

Google Scholar 
Qiu, H. et al. Mesoporous Li2FeSiO4@ ordered mesoporous carbon composites cathode material for lithium-ion batteries. Carbon 87, 365–373 (2015).Article 
CAS 

Google Scholar 
Dai, D. S., Zhou, P., An, J. & Zheng, H. Preparation and photocatalytic properties of TiO2/CMK-3 composites. Key Eng. Mater. 519, 240–243 (2012).Article 
CAS 

Google Scholar 
Radhakrishnan, R. et al. Oxidative esterification of furfural by Au nanoparticles supported CMK-3 mesoporous catalysts. Appl. Catal. A Gen. 545, 33–43 (2017).Article 
CAS 

Google Scholar 
Jun, S. et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122(43), 10712–10713 (2000).Article 
CAS 

Google Scholar 
Varma, A., Mukasyan, A. S., Rogachev, A. S. & Manukyan, K. V. Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016).Article 
CAS 

Google Scholar 
Yang, A. et al. A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. J. Mater. Chem. B 1(13), 1804–1811 (2013).Article 
CAS 

Google Scholar 
He, Z. et al. The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications. J. Mater. Sci. 52, 2422–2434 (2017).Article 
ADS 
CAS 

Google Scholar 
Youssef, N. A. E., Amer, E., El Naga, A. O. A. & Shaban, S. A. Molten salt synthesis of hierarchically porous carbon for the efficient adsorptive removal of sodium diclofenac from aqueous effluents. J. Taiwan Inst. Chem. Eng. 113, 114–125 (2020).Article 
CAS 

Google Scholar 
Madian, M. et al. Ternary CNTs@ TiO2/CoO nanotube composites: Improved anode materials for high performance lithium ion batteries. Materials 10(6), 678 (2017).Article 
ADS 

Google Scholar 
Wang, J., Yu, X., Li, Y. & Liu, Q. Poly (3, 4-ethylenedioxythiophene)/mesoporous carbon composite. J. Phys. Chem. C 111(49), 18073–18077 (2007).Article 
CAS 

Google Scholar 
Saied, M. E., Shaban, S. A., Mostafa, M. S. & Naga, A. O. A. E. Efficient adsorption of acetaminophen from the aqueous phase using low-cost and renewable adsorbent derived from orange peels. Biomass Convers. Biorefinery 14, 2155–2172 (2024).Article 
CAS 

Google Scholar 
Zhang, G., Chen, Y., Huang, K., Chen, Y. & Guo, H. CMK-3/NiCo2S4 nanostructures for high performance asymmetric supercapacitors. Mater. Chem. Phys. 220, 270–277 (2018).Article 
CAS 

Google Scholar 
Liu, W., Lu, C., Wang, X., Liang, K. & Tay, B. K. In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. J. Mater. Chem. A 3(2), 624–633 (2015).Article 
CAS 

Google Scholar 
Huang, W. et al. 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci. Rep. 7(1), 5220 (2017).Article 
ADS 

Google Scholar 
Singh, P., Roy, S. & Jaiswal, A. Cubic gold nanorattles with a solid octahedral core and porous shell as efficient catalyst: Immobilization and kinetic analysis. J. Phys. Chem. C 121(41), 22914–22925 (2017).Article 
CAS 

Google Scholar 
Din, M. I., Khalid, R. & Hussain, Z. Novel in-situ synthesis of copper oxide nanoparticle in smart polymer microgel for catalytic reduction of methylene blue. J. Mol. Liq. 358, 119181 (2022).Article 
CAS 

Google Scholar 
Subhan, F., Aslam, S., Yan, Z. & Yaseen, M. Unusual Pd nanoparticle dispersion in microenvironment for p-nitrophenol and methylene blue catalytic reduction. J. Colloid Interface Sci. 578, 37–46 (2020).Article 
ADS 
CAS 

Google Scholar 
Xie, Y. et al. Highly regenerable mussel-inspired Fe3O4@ polydopamine-Ag core–shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).Article 
CAS 

Google Scholar 
Sahoo, P. K., Kumar, N., Thiyagarajan, S., Thakur, D. & Panda, H. S. Freeze-casting of multifunctional cellular 3D-graphene/Ag nanocomposites: Synergistically affect supercapacitor, catalytic, and antibacterial properties. ACS Sustain. Chem. Eng. 6(6), 7475–7487 (2018).Article 
CAS 

Google Scholar 
Luo, J., Zhang, N., Lai, J., Liu, R. & Liu, X. Tannic acid functionalized graphene hydrogel for entrapping gold nanoparticles with high catalytic performance toward dye reduction. J. Hazard. Mater. 300, 615–623 (2015).Article 
CAS 

Google Scholar 
Veerakumar, P. et al. Nickel nanoparticle-decorated porous carbons for highly active catalytic reduction of organic dyes and sensitive detection of Hg (II) ions. ACS Appl. Mater. Interfaces 7(44), 24810–24821 (2015).Article 
CAS 

Google Scholar 
Wołowicz, A. & Wawrzkiewicz, M. Screening of ion exchange resins for hazardous Ni (II) removal from aqueous solutions: Kinetic and equilibrium batch adsorption method. Processes 9(2), 285 (2021).Article 

Google Scholar 

Hot Topics

Related Articles