The Fourier transform in analytical science

Bracewell, R. N. The Fourier Transform and Its Applications (McGraw Hill, 2000).Fourier, J. B. J. Théorie Analytique de la Chaleur (Firmin Didot Père et Fils, 1822).Freeman, A. The Analytical Theory of Heat (Cambridge Univ. Press, 1878).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 
MathSciNet 

Google Scholar 
Hogan, J. A. & Lakey, J. D. Fourier uncertainty principles. in Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling 191–243 (Birkhäuser, 2005).Cooley, J. W. & Tukey, J. W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965).Article 
MathSciNet 

Google Scholar 
Qi, Y. & O’Connor, P. B. Data processing in Fourier transform ion cyclotron resonance mass spectrometry. Mass. Spectrom. Rev. 33, 333–352 (2014).Article 
ADS 

Google Scholar 
Mallat, S. A Wavelet Tour of Signal Processing, The Sparse Way (Elsevier, 2008).Qi, Y. et al. Absorption-mode: the next generation of Fourier transform mass spectra. Anal. Chem. 84, 2923–2929 (2012).Article 

Google Scholar 
Marshall, A. G., Hendrickson, C. L. & Jackson, G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).Article 
ADS 

Google Scholar 
Marshall, A. G. & Chen, T. 40 years of Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 377, 410–420 (2015).Article 

Google Scholar 
Makarov, A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72, 1156–1162 (2000).Article 

Google Scholar 
Hardman, M. & Makarov, A. A. Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 75, 1699–1705 (2003).Article 

Google Scholar 
Scigelova, M. & Makarov, A. Orbitrap mass analyzer — overview and applications in proteomics. Proteomics 6, 16–21 (2006).Article 

Google Scholar 
Lozano, D. C. P. et al. Pushing the analytical limits: new insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power. Chem. Sci. 10, 6966–6978 (2019).Article 

Google Scholar 
Ernst, R. R. Nuclear magnetic resonance Fourier transform spectroscopy (nobel lecture). Angew. Chem. Int. Ed. Engl. 31, 805–823 (1992).Article 

Google Scholar 
Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, 1990).Wüthrich, K. NMR studies of structure and function of biological macromolecules (nobel lecture). Angew. Chem. Int. Ed. 42, 3340–3363 (2003).Article 

Google Scholar 
Berthomieu, C. & Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 101, 157–170 (2009).Article 

Google Scholar 
Fellgett, P. Theory of Infra-red Sensitivities and Its Application to Investigations of Stellar Radiation in the Near Infra-red (Univ. Cambridge, 1951).Connes, J. & Connes, P. Near-infrared planetary spectra by Fourier spectroscopy I instruments and results. J. Opt. Soc. Am. 56, 896 (1966).Article 
ADS 

Google Scholar 
Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).Article 
ADS 

Google Scholar 
De Miguel-Hernández, J., Hoyland, R. J., Gómez Reñasco, M. F., Rubiño-Martín, J. A. & Viera-Curbelo, T. A. A high-sensitivity Fourier transform spectrometer for cosmic microwave background observations. IEEE Trans. Instru. Meas. 69, 4516–4523 (2020).Article 
ADS 

Google Scholar 
Georgescu, I. The first decade of XFELs. Nat. Rev. Phys. 2, 345–345 (2020).Article 

Google Scholar 
Jeener, J. The Unpublished Basko Polje (1971) Lecture Notes About Two-dimensional NMR Spectroscopy (Editions de la Physique, 1994).Jeener, J. & Alewaeters, G. ‘Pulse pair technique in high resolution NMR’ a reprint of the historical 1971 lecture notes on two-dimensional spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 94–95, 75–80 (2016).Article 

Google Scholar 
Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ. Press, 1987).Delsuc, M. A. Spectral representation of 2D NMR spectra by hypercomplex numbers. J. Magn. Reson. 77, 119–124 (1988).ADS 

Google Scholar 
Orekhov, V., Kasprzak, P. & Kazimierczuk, K. in Two‐Dimensional NMR Methods Ch. 2 (eds Ivanov, K., Madhu, P. K. & Rajalakshmi, G.) 19–46 (Wiley, 2023).Aue, W. P., Bartholdi, E. & Ernst, R. R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64, 2229–2246 (1976).Article 
ADS 

Google Scholar 
Jeener, J. Jeener, Jean: reminiscences about the early days of 2D NMR. eMagRes https://doi.org/10.1002/9780470034590.emrhp0087 (2007).Keeler, J. Understanding NMR Spectroscopy 2nd edn (Wiley, 2010).Fritzsch, R. et al. Two-dimensional infrared spectroscopy: an emerging analytical tool? Analyst 145, 2014–2024 (2020).Article 
ADS 

Google Scholar 
Agthoven, M. A. et al. Two-dimensional mass spectrometry: new perspectives for tandem mass spectrometry. Eur. Biophys. J. 48, 213–229 (2019).Article 

Google Scholar 
Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).Article 
ADS 

Google Scholar 
Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).Article 

Google Scholar 
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 67, 235–242 (2011).Article 
ADS 

Google Scholar 
Helmus, J. J. & Jaroniec, C. P. Nmrglue: an open source python package for the analysis of multidimensional NMR data. J. Biomol. NMR 55, 355–367 (2013).Article 

Google Scholar 
Chiron, L., Coutouly, M.-A., Starck, J.-P., Rolando, C. & Delsuc, M.-A. SPIKE a processing software dedicated to Fourier spectroscopies. Preprint at https://arxiv.org/abs/10.48550/ARXIV.1608.067771608.06777 (2016).Maciejewski, M. W. et al. NMRbox: a resource for biomolecular NMR computation. Biophys. J. 112, 1529–1534 (2017).Article 
ADS 

Google Scholar 
Rusconi, F. Free open source software for protein and peptide mass spectrometry-based science. Curr. Protein Peptide Sci. 22, 134–147 (2021).Article 

Google Scholar 
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Article 

Google Scholar 
Deutsch, E. mzML: a single, unifying data format for mass spectrometer output. Proteomics 8, 2776–2777 (2008).Article 

Google Scholar 
Srivastava, D. J., Vosegaard, T., Massiot, D. & Grandinetti, P. J. Core scientific dataset model: a lightweight and portable model and file format for multi-dimensional scientific data. PLoS ONE 15, e0225953 (2020).Article 

Google Scholar 
Choi, M. et al. MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets. Nat. Methods 17, 981–984 (2020).Article 

Google Scholar 
Wilhelm, M., Kirchner, M., Steen, J. A. J. & Steen, H. mz5: space- and time-efficient storage of mass spectrometry data sets. Mol. Cell. Proteom. 11, O111.011379 (2012).Article 

Google Scholar 
Sundling, M., Sukumar, N., Zhang, H., Embrechts, M. J. & Breneman, C. M. in Reviews in Computational Chemistry Vol. 22 (eds Lipkowitz, K. B., Cundari, T. R., Gillet, V. J. & Boyd, D. B.) 295–329 (Wiley, 2006).Hoang, V. D. Wavelet-based spectral analysis. Trends Anal. Chem. 62, 144–153 (2014).Article 

Google Scholar 
Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Wiley, 1949).Cadzow, J. A. Signal enhancement — a composite property mapping algorithm. IEEE Trans. Acoust. Speech Signal Process. 36, 49–62 (1988).Article 

Google Scholar 
Chiron, L. et al. Efficient denoising algorithms for large experimental datasets and their applications in Fourier transform ion cyclotron resonance mass spectrometry. Proc. Natl Acad. Sci. USA 111, 1385–1390 (2014).Article 
ADS 

Google Scholar 
Stern, A. S. & Hoch, J. C. A new approach to compressed sensing for NMR. Magn. Reson. Chem. 53, 908–912 (2015).Article 

Google Scholar 
Gamez, G. Compressed sensing in spectroscopy for chemical analysis. J. Anal. At. Spectrom. 31, 2165–2174 (2016).Article 

Google Scholar 
Xie, Y. R., Castro, D. C., Rubakhin, S. S., Sweedler, J. V. & Lam, F. Enhancing the throughput of FT mass spectrometry imaging using joint compressed sensing and subspace modeling. Anal. Chem. 94, 5335–5343 (2022).Article 

Google Scholar 
Kazimierczuk, K. & Orekhov, V. Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn. Reson. Chem. 53, 921–926 (2015).Article 

Google Scholar 
Bray, F. et al. Nonuniform sampling acquisition of two-dimensional Fourier transform ion cyclotron resonance mass spectrometry for increased mass resolution of tandem mass spectrometry precursor ions. Anal. Chem. 89, 8589–8593 (2017).Article 

Google Scholar 
Pustovalova, Y., Mayzel, M. & Yu Orekhov, V. XLSY: extra‐large NMR spectroscopy. Angew. Chem. Int. Ed. 130, 14239–14241 (2018).Article 
ADS 

Google Scholar 
Rajaby, E. & Sayedi, S. M. A structured review of sparse fast Fourier transform algorithms. Digital Signal Process. 123, 103403 (2022).Article 

Google Scholar 
Candes, E. J., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).Article 
MathSciNet 

Google Scholar 
Donoho, D. L. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).Article 
MathSciNet 

Google Scholar 

Hot Topics

Related Articles