Room-temperature synthesis of m-benzyne | Nature Synthesis

Wentrup, C. The benzyne story. Aust. J. Chem. 63, 979–986 (2010).Article 
CAS 

Google Scholar 
Wenk, H. H., Winkler, M. & Sander, W. One century of aryne chemistry. Angew. Chem. Int. Ed. 42, 502–528 (2003).Article 
CAS 

Google Scholar 
Sander, W. m-Benzyne and p-benzyne. Acc. Chem. Res. 32, 669–676 (1999).Article 
CAS 

Google Scholar 
Kraka, E. & Cremer, D. Ortho-, meta-, and para-benzyne. A comparative CCSD (T) investigation. Chem. Phys. Lett. 216, 333–340 (1993).Article 
CAS 

Google Scholar 
Wenthold, P. G. & Squires, R. R. Biradical thermochemistry from collision-induced dissociation threshold energy measurements. Absolute heats of formation of ortho-, meta-, and para-benzyne. J. Am. Chem. Soc. 116, 6401 (1994).Fisher, I. P. & Lossing, F. P. Ionization potential of benzyne. J. Am. Chem. Soc. 85, 1018–1019 (1963).Article 
CAS 

Google Scholar 
Marquardt, R., Sander, W. & Kraka, E. 1,3-Didehydrobenzene (m-benzyne). Angew. Chem. Int. Ed. 35, 746–748 (1996).Article 
CAS 

Google Scholar 
Bertorello, H. E., Rossi, R. A. & de Rossi, R. H. Thermal decomposition of carboxybenzenediazonium salts. II. 1,3-Dehydroaromatic compounds from carboxybenzenediazonium salts. J. Org. Chem. 35, 3332–3338 (1970).Article 
CAS 

Google Scholar 
Berry, R. S., Clardy, J. & Schafer, M. E. Decomposition of benzenediazonium-3-carboxylate: transient 1,3-dehydrobenzene. Tetrahedron Lett. 6, 1011–1017 (1965).Article 

Google Scholar 
Sander, W. et al. Vibrational spectrum of m-benzyne: a matrix isolation and computational study. J. Am. Chem. Soc. 124, 13072–13079 (2002).Article 
CAS 
PubMed 

Google Scholar 
Winkler, M. & Sander, W. The structure of meta-benzyne revisited – a close look into σ-bond formation. J. Phys. Chem. A 105, 10422–10432 (2001).Wei, H., Hrovat, D. A., Mo, Y., Hoffmann, R. & Borden, W. T. The contributions of through-bond interactions to the singlet–triplet energy difference in 1,3-dehydrobenzene. J. Phys. Chem. A 113, 10351–10358 (2009).Article 
CAS 
PubMed 

Google Scholar 
Dilmaç, A. M., Spuling, E., de Meijere, A. & Bräse, S. Propellanes—from a chemical curiosity to ‘explosive’ materials and natural products. Angew. Chem. Int. Ed. 56, 5684–5718 (2017).Article 

Google Scholar 
Varvoglis, A. The Organic Chemistry of Polycoordinated Iodine (VCH, 1992).
Google Scholar 
Yoshimura, A. & Zhdankin, V. V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev. 116, 3328–3435 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wirth, T. (ed) Hypervalent Iodine Chemistry (Springer, 2016).Ochiai, M. Hypervalent aryl-, alkynyl-, and alkenyl-λ3-bromanes. Synlett 2009, 159–173 (2009).Miyamoto, K. Chemistry of Hypervalent Bromine. In Patai’s Chemistry of Functional Groups (ed. Rappoport, Z.) 781–806 (Wiley, 2018).Okuyama, T., Takino, T., Sueda, T. & Ochiai, M. Solvolysis of cyclohexenyliodonium salt, a new precursor for the vinyl cation: remarkable nucleofugality of the phenyliodonio group and evidence for internal return from an intimate ion-molecule pair. J. Am. Chem. Soc. 117, 3360–3367 (1995).Article 
CAS 

Google Scholar 
Nakajima, M., Miyamoto, K., Hirano, K. & Uchiyama, M. Diaryl-λ3-chloranes: versatile synthesis and unique reactivity as aryl cation equivalent. J. Am. Chem. Soc. 141, 6499–6503 (2019).Article 
CAS 
PubMed 

Google Scholar 
Thoen, K. K. & Kenttämaa, H. I. Reactivity of a substituted m-benzyne biradical. J. Am. Chem. Soc. 121, 800–805 (1999).Article 
CAS 

Google Scholar 
Harada, T., Chiba, M. & Oku, A. Novel homologation reaction of arylzincates bearing a leaving group at the ortho and meta positions. J. Org. Chem. 64, 8210–8213 (1999).Miyamoto, K. et al. Room-temperature chemical synthesis of C2. Nat. Commun. 11, 2134 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kitamura, T. et al. A new and efficient hypervalent iodine–benzyne precursor, (phenyl)[o-(trimethylsilyl)phenyl]iodonium triflate: generation, trapping reaction, and nature of benzyne. J. Am. Chem. Soc. 121, 11674–11679 (1999).Kitamura, T. Synthetic methods for the generation and preparative application of benzyne. Aust. J. Chem. 63, 987–1001 (2010).Article 
CAS 

Google Scholar 
Ochiai, M., Toyonari, M., Nagaoka, T., Chen, D.-W. & Kida, M. Stereospecific synthesis of vinyl(phenyl)iodonium tetrafluoroborates via boron-iodane exchange of vinylboronic acids and esters with hypervalent phenyliodanes. Tetrahedron Lett. 38, 6709–6712 (1997).Article 
CAS 

Google Scholar 
Miyamoto, K. et al. Benchtop-stable hypervalent bromine(III) compounds: versatile strategy and platform for air- and moisture-stable λ3-bromanes. J. Am. Chem. Soc. 143, 9327–9331 (2021).Scherübl, M., Daniliuc, C. G. & Studer, A. Arynes as radical acceptors: TEMPO-mediated cascades comprising addition, cyclization, and trapping. Angew. Chem. Int. Ed. 60, 711–715 (2021).Article 

Google Scholar 
Iida, T. et al. Practical and facile access to bicyclo[3.1.1]heptanes: potent bioisosteres of meta-substituted benzenes. J. Am. Chem. Soc. 144, 21848–21852 (2022).Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 611, 721–726 (2022).Article 
CAS 
PubMed 

Google Scholar 
Nolte, C., Ammer, J. & Mayr, H. Nucleofugality and nucleophilicity of fluoride in protic solvents. J. Org. Chem. 77, 3325–3335 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kolomeitsev, A. A., Vorobyev, M. & Gillandt, H. Versatile application of trifluoromethyl triflate. Tetrahedron Lett. 49, 449–454 (2008).Article 
CAS 

Google Scholar 
Grushin, V. V. & Marshall, W. J. Fluorination of nonactivated haloarenes via arynes under mild conditions, resulting from further studies toward Ar-F reductive elimination from palladium(II). Organometallics 27, 4825–4828 (2008).Article 
CAS 

Google Scholar 
Graskemper, J. W., Wang, B., Qin, L., Neumann, K. D. & DiMagno, S. G. Unprecedented directing group ability of cyclophanes in arene fluorinations with diaryliodonium salts. Org. Lett. 13, 3158–3161 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Diemer, V., Garcia, J. S., Leroux, F. R. & Colobert, F. Aryne-mediated fluorination: synthesis of fluorinated biaryls via a sequential desilylation–halide elimination–fluoride addition process. J. Fluorine Chem. 134, 146–155 (2012).Article 
CAS 

Google Scholar 
Minegishi, S., Loos, R., Kobayashi, S. & Mayr, H. Kinetics of the reactions of halide anions with carbocations: quantitative energy profiles for SN1 reactions. J. Am. Chem. Soc. 127, 2641–2649 (2005).Article 
CAS 
PubMed 

Google Scholar 
Perrin, C. L., Rodgers, B. L. & O’Connor, J. M. Nucleophilic addition to a p-benzyne derived from an enediyne: a new mechanism for halide incorporation into biomolecules. J. Am. Chem. Soc. 129, 4795–4799 (2007).Liu, S., Li, Y. & Lan, Y. Mechanistic study of the fluoride-induced activation of a kobayashi precursor: pseudo-SN2 pathway via a pentacoordinated silicon ate complex. Eur. J. Org. Chem. 2017, 6349–6353 (2017).Johnson, W. T. G. & Cramer, C. Substituent effect on benzyne electronic structures. J. Phys. Org. Chem. 14, 597–603 (2001).Article 
CAS 

Google Scholar 
Shi, J., Li, L. & Li, Y. o‑Silylaryl triflates: a journey of Kobayashi aryne precursors. Chem. Rev. 121, 3892–4044 (2021).Article 
CAS 
PubMed 

Google Scholar 
Medina, J. M., Mackey, J. L., Garg, N. K. & Houk, K. N. The role of aryne distortions, steric effects, and charges in regioselectivities of aryne reactions. J. Am. Chem. Soc. 136, 15798–15805 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nathel, N. F. F., Morrill, L. A., Mayr, H. & Garg, N. K. Quantification of the electrophilicity of benzyne and related intermediates. J. Am. Chem. Soc. 138, 10402–10405 (2016).Article 

Google Scholar 
Kanzian, T., Nigst, T. A., Maier, A., Pichl, S. & Mayr. H. Nucleophilic reactivities of primary and secondary amines in acetonitrile. Eur. J. Org. Chem. 2009, 6379–6385 (2009).Ammer, J., Baidya, M., Kobayashi, S. & Mayr, H. Nucleophilic reactivities of tertiary alkylamines. J. Phys. Org. Chem. 23, 1029–1035 (2010).Article 
CAS 

Google Scholar 
Brotzel, F., Chu, Y. C. & Mayr, H. Nucleophilicities of primary and secondary amines in water. J. Org. Chem. 72, 3679–3688 (2007).Article 
CAS 
PubMed 

Google Scholar 
Mizukoshi, Y., Mikamo, K. & Uchiyama, M. Aryne polymerization enabling straightforward synthesis of elusive poly(ortho-arylene)s. J. Am. Chem. Soc. 137, 74–77 (2015).Article 
CAS 
PubMed 

Google Scholar 
Terrier, F., Pouet, M.-J., Halle, J.-C., Kizilian, E. & Buncel, E. Electrophilic aromatic substitutions: reactions of hydroxy- and methoxy-substituted benzenes with 4,6-dinitrobenzofuroxan: kinetics and mechanism. J. Phys. Org. Chem. 11, 707–714 (1998).Article 
CAS 

Google Scholar 
Shi, J., Qiu, D., Wang, J., Xu, H. & Li, Y. Domino aryne precursor: efficient construction of 2,4-disubstituted benzothiazoles. J. Am. Chem. Soc. 137, 5670–5673 (2015).Article 
CAS 
PubMed 

Google Scholar 
Qiu, D., He, J., Yue, X., Shi, J. & Li, Y. Diamination of domino aryne precursor with sulfonamides. Org. Lett. 18, 3130–3133 (2016).Article 
CAS 
PubMed 

Google Scholar 
Huang, Y. et al. Direct synthesis of ortho-halogenated arylphosphonates via a three-component reaction involving arynes. J. Org. Chem. 86, 7010–7018 (2021).Schleyer, P. v. R., Jiao, H., Glukhovtsev, M. N., Chandrasekhar, J. & Krakas, E. Double aromaticity in the 3,5-dehydrophenyl cation and in cyclo[6]carbon. J. Am. Chem. Soc. 116, 10129–10134 (1994).Toriumi, N., Muranaka, A., Kayahara, E., Yamago, S. & Uchiyama, M. In-plane aromaticity in cycloparaphenylene dications: a magnetic circular dichroism and theoretical study. J. Am. Chem. Soc. 137, 82–85 (2015).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles